scholarly journals Light Scattering by Pure Water and Seawater: Recent Development

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaodong Zhang ◽  
Lianbo Hu

Light scattering by pure water and seawater is a fundamental optical property that plays a critical role in ocean optics and ocean color studies. We briefly review the theory of molecular scattering in liquid and electrolyte solutions and focus on the recent developments in modeling the effect of pressure, extending to extreme environments, and evaluating the effect of salinity on the depolarization ratio. We demonstrate how the modeling of seawater scattering can be applied to better understand spectral absorption and attenuation of pure water and seawater. We recommend future efforts should be directed at measuring the polarized components of scattering by pure water over a greater range of wavelengths, temperature, salinity, and pressure to constrain and validate the model and to improve our knowledge of the water’s depolarization ratio.

2019 ◽  
Vol 58 (4) ◽  
pp. 991 ◽  
Author(s):  
Xiaodong Zhang ◽  
Dariusz Stramski ◽  
Rick A. Reynolds ◽  
E. Riley Blocker

1995 ◽  
Vol 60 (11) ◽  
pp. 1971-1985 ◽  
Author(s):  
Čestmír Koňák ◽  
Zdeněk Tuzar ◽  
Pavla Kopečková ◽  
Joseph D. Andrade ◽  
Jindřich Kopeček

Solution properties of the statistical copolymers of alkyl methacrylates (AMA) with α-methyl-ω-hydroxy-poly(oxyethylene) methacrylates (MPOEMA) (nonionic polysoaps) were studied using static and dynamic ligh scattering as a function of monomer composition and concentration in aqueous and methyl cellosolve solutions. The solubility of the copolymers in water was found to be dependent on molar contant of AMA. While copolymers with low content of hexyl methacrylate (HMA) (0 and 20 mole %) were directly soluble in water, forming true solutions with a low content of large swollen aggregates, copolymers with a higher content of HMA or lauryl methacrylate (LMA) were not directly dispersable in water. A special procedure, the stepwise dialysis from methyl cellosolve solutions against water, had to be used to prepare them in the pseudomicellar form. The copolymers were directly soluble in methyl cellosolve and its water solution containing up to 60 vol.% of water. Nevertheless, the light scattering experiments were dominated by light scattering of swollen particles of aggregated copolymer molecules. The copolymers were not soluble in the mixtures containing 70-100 vol.% of water. Paramaters of aggregates in the mixture with 60 vol.% of water and in pure water were found to be very similar.


1988 ◽  
Vol 140 ◽  
Author(s):  
Irwin L. Singer

AbstractAdvances in solid lubricating films for vacuum and high temperature applications are reviewed. Traditional lubricants (e.g. graphite and dichalcogenides) are being improved and new lubricating materials (e.g. amorphous carbons) are being discovered with the aid of recent developments in deposition processes and surface analytical methods. Ion bombardmenttreatments have increased film adhesion, lowered friction coefficients and enhanced the wearlife of MoS2films, as well as created new forms of lubricating carbons (amorphous, polymeric and diamond-like). Composite films and multilayer coating treatments are providing extra protection for surface and films against environmental degradation. Ultralow friction coefficients (<0.01) have been achieved with MoS 2 as well as diamond-like carbon films. Material selection, in some cases (e.g. thin metal films), can nowbe made basedon scientific principles, although many tribomaterials are still being developed by trialand error methods.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1357
Author(s):  
Andreea-Mariana Negrescu ◽  
Anisoara Cimpean

The critical role of the immune system in host defense against foreign bodies and pathogens has been long recognized. With the introduction of a new field of research called osteoimmunology, the crosstalk between the immune and bone-forming cells has been studied more thoroughly, leading to the conclusion that the two systems are intimately connected through various cytokines, signaling molecules, transcription factors and receptors. The host immune reaction triggered by biomaterial implantation determines the in vivo fate of the implant, either in new bone formation or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and in vivo results were reported. This led to a shift in the development of biomaterials towards implants with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain a proper bone regeneration process. In this context, various approaches, such as the modification of chemical/structural characteristics or the incorporation of bioactive molecules, have been employed in order to modulate the crosstalk with the immune cells. The current review provides an overview of recent developments in such applied strategies.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1163
Author(s):  
Sebastian L. Wild ◽  
Aya Elghajiji ◽  
Carmen Grimaldos Rodriguez ◽  
Stephen D. Weston ◽  
Zoë D. Burke ◽  
...  

The canonical Wnt (Wnt/β-catenin) signalling pathway is highly conserved and plays a critical role in regulating cellular processes both during development and in adult tissue homeostasis. The Wnt/β-catenin signalling pathway is vital for correct body patterning and is involved in fate specification of the gut tube, the primitive precursor of liver. In adults, the Wnt/β-catenin pathway is increasingly recognised as an important regulator of metabolic zonation, homeostatic renewal and regeneration in response to injury throughout the liver. Herein, we review recent developments relating to the key role of the pathway in the patterning and fate specification of the liver, in the directed differentiation of pluripotent stem cells into hepatocytes and in governing proliferation and zonation in the adult liver. We pay particular attention to recent contributions to the controversy surrounding homeostatic renewal and proliferation in response to injury. Furthermore, we discuss how crosstalk between the Wnt/β-catenin and Hedgehog (Hh) and hypoxia inducible factor (HIF) pathways works to maintain liver homeostasis. Advancing our understanding of this pathway will benefit our ability to model disease, screen drugs and generate tissue and organ replacements for regenerative medicine.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Omar Moudam ◽  
Silvia Villarroya-Lidon

The performance of a flexible and glass dye-sensitized solar cell (DSSC) with water-based electrolyte solutions is described. High concentrations of alkylamidazoliums were used to overcome the deleterious effect of water and, based on this variable, pure water-based electrolyte DSSCs were tested displaying the highest recorded efficiency so far of 3.45% and 6% for flexible and glass cells, respectively, under a simulated air mass 1.5 solar spectrum illumination at 100 mWcm−2. An improvement in the Jsc with high water content and the positive impact of GuSCN on the enhancement of the performance of pure water-based electrolytes were also observed.


2009 ◽  
Vol 48 (4) ◽  
pp. 716 ◽  
Author(s):  
Stephen D. Druger ◽  
Jozsef Czege ◽  
Zhaozhang Li ◽  
Burt V. Bronk

Sign in / Sign up

Export Citation Format

Share Document