dynamic light scattering
Recently Published Documents


TOTAL DOCUMENTS

2717
(FIVE YEARS 326)

H-INDEX

82
(FIVE YEARS 9)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 266
Author(s):  
Josef Maroušek ◽  
Anna Maroušková ◽  
Rajiv Periakaruppan ◽  
G. M. Gokul ◽  
Ananthan Anbukumaran ◽  
...  

Lignin is a natural biopolymer. A vibrant and rapid process in the synthesis of silica nanoparticles by consuming the lignin as a soft template was carefully studied. The extracted biopolymer from coir pith was employed as capping and stabilizing agents to fabricate the silica nanoparticles (nSi). The synthesized silica nanoparticles (nSi) were characterized by ultraviolet–visible (UV–Vis) spectrophotometry, X-ray diffraction analysis (XRD), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Analysis (EDAX), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared Spectroscopy (FTIR). All the results obtained jointly and independently verified the formation of silica nanoparticles. In addition, EDAX analysis confirmed the high purity of the nSi composed only of Si and O, with no other impurities. XRD spectroscopy showed the characteristic diffraction peaks for nSi and confirmed the formation of an amorphous nature. The average size of nSi obtained is 18 nm. The surface charge and stability of nSi were analyzed by using the dynamic light scattering (DLS) and thus revealed that the nSi samples have a negative charge (−20.3 mV). In addition, the seed germination and the shoot and root formation on Vigna unguiculata were investigated by using the nSi. The results revealed that the application of nSi enhanced the germination in V. unguiculata. However, further research studies must be performed in order to determine the toxic effect of biogenic nSi before mass production and use of agricultural applications.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiaqi Hu ◽  
Lu Ding ◽  
Jing Chen ◽  
Jinhua Fu ◽  
Kang Zhu ◽  
...  

AbstractHerein, we reported a new dynamic light scattering (DLS) immunosensing technology for the rapid and sensitive detection of glycoprotein N-terminal pro-brain natriuretic peptide (NT-proBNP). In this design, the boronate affinity recognition based on the interaction of boronic acid ligands and cis-diols was introduced to amplify the nanoparticle aggregation to enable highly sensitive DLS transduction, thereby lowering the limit of detection (LOD) of the methodology. After covalently coupling with antibodies, magnetic nanoparticles (MNPs) were employed as the nanoprobes to selectively capture trace amount of NT-proBNP from complex samples and facilitate DLS signal transduction. Meanwhile, silica nanoparticles modified with phenylboronic acid (SiO2@PBA) were designed as the crosslinking agent to bridge the aggregation of MNPs in the presence of target NT-proBNP. Owing to the multivalent and fast affinity recognition between NT-proBNP containing cis-diols and SiO2@PBA, the developed DLS immunosensor exhibited charming advantages over traditional immunoassays, including ultrahigh sensitivity with an LOD of 7.4 fg mL−1, fast response time (< 20 min), and small sample consumption (1 μL). The DLS immunosensor was further characterized with good selectivity, accuracy, precision, reproducibility, and practicability. Collectively, this work demonstrated the promising application of the designed boronate affinity amplified-DLS immunosensor for field or point-of-care testing of cis-diol-containing molecules. Graphical Abstract


2022 ◽  
Vol 66 (1) ◽  
pp. 105-110
Author(s):  
Joseph H. Baker ◽  
Jingwen Zhang ◽  
Mingzhen Zhao ◽  
Michael Mullins ◽  
Hung-Jue Sue

2022 ◽  
Author(s):  
Hao Lou ◽  
Michael Hageman

This study aimed to investigate the diffusivities of lysozyme (LYS), ovalbumin (OVA), and hyaluronic acid (HA) in buffered solvents using dynamic light scattering (DLS). For protein/solvent and HA/solvent binary systems,...


2021 ◽  
Vol 10 (4) ◽  
pp. 19-21
Author(s):  
V. Gayathri ◽  
R. Balan

In this paper, the synthesis of Zirconium oxide (ZrO2) nanoparticles was carried out by the Conventional precipitation method. Ultraviolet, visible spectroscopy (UV-Vis), and dynamic light scattering analysis (DLS) were performed to find the particles' bandgap and size. Fourier transform infrared spectroscopy (FT-IR) observed the characteristic bands of Zirconium oxide nanoparticles. Dynamic light scattering analysis showed that the size of the particle was found to be 119 nm.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 69
Author(s):  
Fangrong Zhang ◽  
Gesa Richter ◽  
Benjamin Bourgeois ◽  
Emil Spreitzer ◽  
Armin Moser ◽  
...  

A fundamental step in developing a protein drug is the selection of a stable storage formulation that ensures efficacy of the drug and inhibits physiochemical degradation or aggregation. Here, we designed and evaluated a general workflow for screening of protein formulations based on small-angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling, temperature control, and fast data analysis and provides protein particle interaction information. SAXS, together with different methods including turbidity analysis, dynamic light scattering (DLS), and SDS-PAGE measurements, were used to obtain different parameters to provide high throughput screenings. Using a set of model proteins and biopharmaceuticals, we show that SAXS is complementary to dynamic light scattering (DLS), which is widely used in biopharmaceutical research and industry. We found that, compared to DLS, SAXS can provide a more sensitive measure for protein particle interactions, such as protein aggregation and repulsion. Moreover, we show that SAXS is compatible with a broader range of buffers, excipients, and protein concentrations and that in situ SAXS provides a sensitive measure for long-term protein stability. This workflow can enable future high-throughput analysis of proteins and biopharmaceuticals and can be integrated with well-established complementary physicochemical analysis pipelines in (biopharmaceutical) research and industry.


Author(s):  
C S Velez-Saboyá ◽  
J R Guzmán-Sepúlveda ◽  
Jesus Carlos Ruiz-Suárez

Abstract Phase transitions of liposomes are normally studied by differential scanning calorimetry (DSC). A suspension of liposomes is subjected to an increase (decrease) of temperature and when heat is absorbed (released), the liposomes transit from a gel (liquid) to a liquid (gel) phase. This endothermic (exothermic) process takes place at a temperature called the melting temperature Tm, which is distinctive of the type of lipids forming the vesicles. The vesicles, though, also modify their size in the transition. Indeed, the thickness of the membranes decreases (increases) because carbon tails misalign (align). Concomitant with the modifications in the membrane thickness, the diameter (D) of the liposomes changes too. Therefore, when they are inspected by light, the scattered signal carries information from such dilatation (contraction) process. We performed careful experiments using dynamic light scattering (DLS) as a function of temperature to detect the size changes of different liposomes. Gaussian fits of the derivatives of the D vs T curves coincide within 1% with thermograms, which hints to the possibility of performing thermodynamic studies of lipid systems employing light.


2021 ◽  
Vol 11 (6-S) ◽  
pp. 53-69
Author(s):  
Bipin Lade ◽  
Akash Kamdi ◽  
Arti Shanware

In the present study, an attempt has been made to build and evaluate Chitosan+Glycerol/Gallic acid/Thymol-silver nanoparticles or chitosan blended (C+G/GA/T-SNPs) film to significantly improve antioxidant and antibacterial activity for accelerated wound healing. Methanolic Gallic acid is used for the first time in antibacterial chitosan control (C+G) films. All developed films, compounds was Thymol and Gallic acid and their synthesized Thymol silver nanoparticles (T-SNPs) and Gallic acid silver nanoparticles (GA-SNPs) were characterized by Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), X-Ray diffraction (XRD), Zeta potential (ZP), Dynamic light scattering (DLS), and UV-Vis spectroscopy. T-SNPs and GA-SNPs are rod and spherical in shape and were sufficient to reduce, capped, and stabilize. T-SNPs and GA-SNPs were measured Dynamic Light scattering and found to be 123.2 nm and 121.1 nm with surface charges of -19.7 and -20.3 respectively. The incorporation of methanolic Gallic acid and T-SNPs into chitosan films, as predicted, effectively enhanced antioxidant and antimicrobial activity. The antimicrobial activity of Thymol, T-SNPs and C+G/GA/T-SNPs film showed more zone of inhibition than Gallic acid, GA-SNPs and C+G film. The elasticity, texture and folding endurance of the C+G film and C+G/GA/T-SNPs films have been substantially improved. The ecological quality of the generated C+G and C+G/GA/T-SNPs film was determined by the assessment of soil degradation and water degradation parameters. These findings lead to the conclusion that the C+G/GA/T-SNPs film produced with Gallic acid and T-SNPs can improve wound healing. Keywords: Chitosan, Gallic Acid, Thymol Silver Nanoparticles, Antibacterial and Antioxidant Properties.


Sign in / Sign up

Export Citation Format

Share Document