Research on Surface Quality for CBN Grinding Wheel Based on “Speed Effect”

2015 ◽  
Vol 667 ◽  
pp. 130-135
Author(s):  
Xue Sun ◽  
Tian Biao Yu ◽  
Wan Shan Wang

In order to study the influence of grinding surface quality affected by grinding speed for CBN grinding wheel, the method of simulation and experimentation used to study grinding surface quality of CBN grinding wheel. First, on the basis of grinding wheel topography, the influence of grinding surface quality affected by grinding speed was analyzed by adopting motion simulation method. Then, high-speed grinding experiment was carried out to three kinds of metal materials, and machined surface roughness and surface hardness after processing are measured and researched. Test shows that “speed effect” is remarkable in grinding metal materials. As the grinding speed increases, the grinding surface quality of workpiece is gradually improved. With the speed increasing, surface roughness of workpiecedecreases, and at lower speeds the surface roughness dropped more obvious. With grinding speed increases further, the change of roughness tends to be slow, and the bending point appears at about 100m/s.Surface hardening degree decreases with grinding speed increasing, when grinding speed up to high-speed grinding stage, the degree of hardening of the workpiece is more soothing.

2010 ◽  
Vol 126-128 ◽  
pp. 154-158 ◽  
Author(s):  
Jian Wu Yu ◽  
Tao Chen ◽  
Zhen Tao Shang ◽  
Xiao Min Sheng ◽  
Gui Zhi Xie

This paper focuses on experimental investigation on high speed grinding of 40 Cr steel with vitrified CBN grinding wheel, the effect of grinding process parameters, such as grinding speed, depth of cut, and feed rate, on the grinding force and surface roughness are analyzed The experimental results reveal that the grinding force decreases with higher grinding speed and increases with the addition of depth of cut or feed rate, and the surface roughness is satisfactory in high speed grinding.


2014 ◽  
Vol 1027 ◽  
pp. 140-145
Author(s):  
Yao Guang Chen ◽  
Wen Zhuang Lu ◽  
Jun Xu ◽  
Yan Song Zhu ◽  
Dun Wen Zuo

A series of grinding experiments were carried out with CBN wheel to focus on the surface integrity of titanium alloy TC4-DT in high speed grinding . In order to get the proper process parameters to control the surface integrity of the TC4-DT, surface roughness, subsurface morphology and microhardness variations have been studied. In addition to the use of CBN wheel, scanning electron microscopy (SEM), 3-d contour instrument and microhardness tester was applied. The results show that the surface roughness is decreased obviously when grinding wheel linear velocity rises from 60m/s to 80m/s. While the grinding speed rises from 80m/s to 100m/s, the surface roughness value increases slightly. Moreover, the surface roughness value increases with the grinding depth and the increasing trend is obvious in the process of machining. The microstructure analysis shows that during high speed grinding with CBN wheels, good quality surface with 10μm grinding depth can be obtained. Table feed rate has weak influence on the grinding surface topography. The microhardness analysis indicates that surface microhardness increases sharply with the increasing of grinding wheel linear velocity in high speed grinding.


2021 ◽  
Author(s):  
Wei Li ◽  
Qidi Chen ◽  
Jian Wu ◽  
Mingjia Liu ◽  
Yinghui Ren ◽  
...  

Abstract The machining quality of the blade tip has a great influence on the service performance and life of the aero-engine blade. The recent paper investigates the effect of vibration during the grinding process of the GH4169 nickel-based superalloy blade tip. Moreover, this paper proposes a theoretical model to link the unbalance of the grinding wheel, the vibration, and the surface topography characteristics of the blade. The results show that the blade vibration during grinding and the resulting non-linear change of the grinding depth could reduce the surface quality of the blade tip, and lead to differences in the surface quality of the blade tip in different areas, where the surface roughness in the entry area zone I is the largest, in the exit area zone III is the second largest, and the intermediate area zone III is the smallest. Grinding depth has a greater impact on the difference of the surface quality in the blade tip grinding process, especially when the grinding depth is greater than 4 μm, the difference of surface roughness increases significantly. On the other hand, the feed rate has little effect on the difference in surface quality. Adding damping block can reduce the surface roughness of the blade tip, however, it does not reduce the difference in surface quality.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769354 ◽  
Author(s):  
Dao-hui Xiang ◽  
Zhong-yun Liu ◽  
Zhi-kun Zhou ◽  
Yun-long Yao

The kinematic characteristics, grinding force, surface quality of workpiece surface, and wear of abrasive particles were studied by theoretical analysis and experimental study on the single cubic boron nitride abrasive particles under ultrasonic-assisted high-speed grinding. Under the condition of the same grinding parameters, the motion characteristics and the grinding forces of the two machining modes of general grinding and ultrasonic-assisted grinding are compared and analyzed. Research shows that the ultrasonic vibration is applied in the common external circular grinding on grinding particle movement characteristics changed obviously, grinding particle trajectory of variable length, cutting groove width wider, thereby improving the grinding efficiency and the grinding removal rate; ultrasonic assisted under high speed grinding, the grinding force is higher than that of common grinding force is small, efficiency of grinding under ultrasonic processing mode is much higher than ordinary grinding, the surface quality of the workpiece has improved markedly.


2011 ◽  
Vol 325 ◽  
pp. 28-34
Author(s):  
Bei Zhi Li ◽  
Da Hu Zhu ◽  
Zhen Xin Zhou ◽  
Jing Zhu Pang ◽  
Jian Guo Yang

The surface quality of workpiece depends largely on workpiece surface temperature in grinding. The key parameters on workpiece surface temperature calculation model have been researched and the calculation model constructed in this paper, including the convective heat transfer coefficient (CHTC) (hf), heat flux (qch) and the grain contact half-width (r0) which are assumed to be constant in workpiece surface temperature model given by Rowe. And the improved Rowe model has been proposed (Rowe/Li model) which not only involves the grinding process parameters such as the speed of wheel and workpiece, but also the geometric parameters of workpiece, grinding wheel and abrasive. The experimental results of the surface temperature in high-speed grinding are very close to the results by Rowe / Li model. Relative to the Rowe model, the obtained surface temperature by Rowe / Li model has decreased by about 35-40%. Under the conditions of the same material removal rate, high-speed grinding, namely, increasing wheel speed can effectively reduce the surface temperature and improve the grinding quality.


2013 ◽  
Vol 797 ◽  
pp. 500-504
Author(s):  
Xue Zhi Wang ◽  
Wan Shan Wang ◽  
Tian Biao Yu ◽  
Na Yuan ◽  
Xue Sun

For ultra-high-speed grinding, the deformation of grinding wheel has a greater impact on the machining accuracy. Finite element method was used to study the radial deformation of the CBN grinding wheel considering centrifugal force and grinding heat. The study shows that the effects of centrifugal force and grinding heat are same magnitude, and the proportion changes with the change of grinding speed and grinding force. By finite element analysis, it is possible to solve the grinding wheel the radial deformation and grinding temperature under different grinding speed and grinding force, and it also provides theoretical support for predicting the machining accuracy, compensating precision and avoiding grinding burn.


2008 ◽  
Vol 392-394 ◽  
pp. 624-628 ◽  
Author(s):  
Tong Wang ◽  
Yu Mei Lu ◽  
Shuang Shuang Hao ◽  
Shu Qiang Xie ◽  
Xiao Cun Xu ◽  
...  

This paper studies the surface quality of mould steel with high-speed wire electrical discharge machining (WEDM) method, which is conducted in gas to improve the accuracy of finish cut, and compares the surface quality in atmosphere and in emulsion dielectric. Experiment results showed that WEDM in atmosphere offers advantages such as better surface roughness and higher material removal rate. The relationship about winding speed and worktable feed on WEDMed surface quality in semi-finishing cut and finishing cut had been obtained. Morover, a new attemption was successful in applying dry WEDM in multiple cut to improve surface roughness.


2008 ◽  
Vol 375-376 ◽  
pp. 614-618 ◽  
Author(s):  
Shi Chao Xiu ◽  
Jian Liu ◽  
Chang He Li ◽  
Guang Qi Cai

The balance precision of grinding wheel is a key technical parameter in ultra-high speed grinding process. The actual standard for the balance precision of rigid rotor is not fit for the thin ultra-high speed grinding system well. The unbalance factors affected on the ultra-high speed grinding wheel and its system were analyzed, and its effects on the machining quality in the process were also discussed. The theory and select principle of the balance precision for ultra-high speed grinding wheel system were studied. The test of dynamic performance was performed for the thin ultra-high speed CBN grinding wheel system whose structure was optimized. The groundwork to establish the standard of balance precision for thin ultra-high speed grinding system was offered.


2019 ◽  
Vol 45 (18) ◽  
pp. 24078-24089 ◽  
Author(s):  
Yejun Zhu ◽  
Wenfeng Ding ◽  
Zhiwen Rao ◽  
Zhengcai Zhao

2009 ◽  
Vol 16-19 ◽  
pp. 480-484 ◽  
Author(s):  
Shi Chao Xiu ◽  
Guang Qi Cai

The dynamic performance of the grinding wheel system is one of the key factors to affect the super-high speed grinding process The excessive centrifugal stress acted on the wheel body can make the wheel rupture due to the super-high rotary speed of the wheel. And the alternating centrifugal force caused by the wheel imbalance can not only make the spindle and bearings vibration and failure, but also lower the machining precision and the wheel life, as well as make against the safety. In this paper, the centrifugal stress of the high speed grinding wheel and its effect on machining process were analyzed by means of finite element analysis and simulation. The alternating centrifugal force and its effect on the wheel spindle system were investigated. Furthermore, the balance precision of super high speed grinding wheel and system was discussed for achieving the high precision, safety and efficiency machining process.


Sign in / Sign up

Export Citation Format

Share Document