Electrochemical Performance of Mn and Fe Substitution in LiCo0.9X0.1O2 Cathode Materials

2020 ◽  
Vol 301 ◽  
pp. 195-201
Author(s):  
Nor Syamilah Syamimi Mohd Abdillih ◽  
Norlida Kamarulzaman ◽  
Kelimah Elong ◽  
Nurhanna Badar ◽  
Mohd Sufri Mastuli

LiCo0.9X0.1O2 (where X=Mn and Fe) were synthesized using self-propagating combustion (SPC) method using citric acid as a combustion agent. The precursors of LiCo0.9X0.1O2 were annealed at a temperature of 800 °C at 24 h. The phase and crystalinity of the materials were characterized using X-Ray Diffraction (XRD). All the materials were observed to be single and pure phase with no impurity peaks detected. The morphology and particle sizes of the materials were also analyzed using Field Emission Scanning Electron Microcopy (FESEM). Finally, the electrochemical performance of the materials was studied using charge-discharge cycling in the voltage range of 2.5 to 4.3 V. Based on the results from charge-discharge studies, Mn substituted cathode materials exhibit better specific discharge capacity compared with Fe substituted cathode materials.

2020 ◽  
Vol 307 ◽  
pp. 113-118
Author(s):  
Nor Syamilah Syamimi Mohd Abdillih ◽  
Norlida Kamarulzaman ◽  
Kelimah Elong ◽  
Mohd Sufri Mastuli

The effect of Cr and Ni substitution on electrochemical performance of layered LiCo0.9M0.1O2 (M=Cr and Ni) has been investigated. Partial substituted of LiCo0.9Cr0.1O2 and LiCo0.9Ni0.1O2 has been synthesized using a self-propagating combustion (SPC) method with annealing temperature of 700 ̊ C for 24 h. The starting materials used were metal nitrates and citric acid act as a combustion agent. The phase and crystalinity of the materials were characterized using X-Ray Diffraction (XRD) and results showed that the single phase and pure materials were obtained with no impurity peaks were detected. The morphology and particle sizes of samples also analyzed using Field Emission Scanning Electron Microcopy (FESEM). The electrochemical performances of the materials were measured by its charge-discharge cycling which carried out in the voltage range of 2.5 V to 4.5 V. The results from charge-discharge studies found that LiCo0.9Ni0.1O2 has better specific discharge capacity compared with LiCo0.9Cr0.1O2.


2007 ◽  
Vol 121-123 ◽  
pp. 1265-1268 ◽  
Author(s):  
T.A. Han ◽  
J.P. Tu ◽  
Jian Bo Wu ◽  
Y.F. Yuan ◽  
Y. Li

Al-substituted α-Ni(OH)2 was synthesized by a chemical co-precipitation. The as-prepared α-Ni(OH)2 particles were characterized by the means of X-ray diffraction (XRD) and scanning electron microscope (SEM). The obtained α-Ni(OH)2 particles were well crystallized, spherical shape with the particle sizes of 20-35 nm. The electrochemical performance of β-Ni(OH)2 electrode with addition of nanosized α-Ni(OH)2 was investigated by galvanostatic charge-discharge tests. The nanosized α-Ni(OH)2 as additive in the commercial microsized spherical β-Ni(OH)2 electrode improved the discharge capability. As compared to commercial β-Ni(OH)2 electrode, the electrode with nanosized α-Ni(OH)2 exhibited excellent better charge-discharge cycling stability. It may be a promising positive active material for alkaline secondary batteries.


2017 ◽  
Vol 727 ◽  
pp. 738-743 ◽  
Author(s):  
Zong Lin Zuo ◽  
Jin Wang ◽  
Jian Qiu Deng ◽  
Qing Rong Yao ◽  
Zhong Min Wang ◽  
...  

Spherical Li3V2(PO4)3/C cathode materials have been successfully synthesized by a spray drying method. The structure and morphology of the cathode materials are characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric (TG) analysis. The results show that synthesized monoclinic Li3V2(PO4)3 with high purities exhibits spherical morphology, in favor of enhancing the capacities and cycling stability of Li3V2(PO4)3/C cathode materials for lithium-ion battery. The Li3V2(PO4)3/C cathode materials sintered at 750 °C present best electrochemical performance among all the samples. It exhibits high initial discharge capacities of 99.2 mAhg-1 and capacity retention of 93.6% after 200 cycles at a rate of 1C within a voltage range of 3.0–4.3 V.


2011 ◽  
Vol 197-198 ◽  
pp. 1285-1288 ◽  
Author(s):  
Chang Jiu Liu ◽  
Shi Juan Chen ◽  
Dan Ma ◽  
Yan Wei Li

Amorphous nickel hydroxide powder codoped with Fe3+ and PO43- was synthesized by micro-emulsion precipitation method combined with rapid freezing technique. The microstructures of the prepared samples were characterized by XRD, SEM, EDS, and Raman spectra. The electrochemical performance of the prepared samples was analyzed by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge tests. The results showed that this amorphous nickel hydroxide codoped with Fe3+ and PO43- resulted in more structural defects within the nickel hydroxide. The Fe3+ and PO43- codoping could increase the specific discharge capacity and improve the electrochemical reversibility of the amorphous nickel hydroxide.


2010 ◽  
Vol 160-162 ◽  
pp. 554-557
Author(s):  
Gui Yang Liu ◽  
Jun Ming Guo ◽  
Yan Nan Li ◽  
Bao Sen Wang

Spinel LiMn2O4 powders have been prepared at 500 for 5h by solution combustion synthesis in water or ethanol system, using lithium and manganese acetate as raw materials and no fuels. The structure and morphology of the products have been analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemical performance has been charged or discharged in coin-type battery. XRD analysis indicates that the purity and crystallinity of the product prepared in ethanol are much better than these of the product prepared in water. SEM investigation indicates that the particles of the product prepared in ethanol are smaller and more dispersed than these of the products prepared in water. The product prepared in ethanol also exhibits better electrochemical performance than that of the product prepared in water. The initial discharge capacity of the product prepared in ethanol is 120mAh/g, and remains 110mAh/g after 20 cycles, at a current density of 50mA/g and in the voltage range of 3.2-4.35V.


2013 ◽  
Vol 275-277 ◽  
pp. 1733-1736 ◽  
Author(s):  
Zi Tao Yang ◽  
Bo Wen Cheng ◽  
Yong Nan Zhao

NiFe2O4 nanoparticles was successfully synthesized by hydrothermal decomposition of a gel of Ni-Fe-EG (EG=ethylene glycol) in water solution. The crystal structure and morphologies of the products were characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). All the diffraction peaks in XRD patterns revealed that the as-synthesized nanoparticles were pure NiFe2O4. TEM images disclosed that the particle sizes of the nanoparticles were in the range of 10 − 25nm. The cyclic voltammetry (CV) and galvanostatic charge/discharge results tested in 6M KOH solution revealed a double layer capacitive behavior and a revisable charge/discharge property.


2011 ◽  
Vol 287-290 ◽  
pp. 1416-1419
Author(s):  
Chang Jiu Liu ◽  
Pei Pei Li ◽  
Liang Hua Huang

The effect of carbon nanotubes (CNTs) addition on the electrochemical performance of Al doped α-nickel hydroxide is studied. The microstructure and electrochemical performance of the prepared samples are characterized by XRD,SEM, electrochemical impedance spectroscopy, charge-discharge at different rate, and Charge-discharge cycling stability tests. The results show that the addition of CNTs could decrease the electrochemical reaction impedance dramatically, increase the specific discharge capacity at higher rate, and improve the Charge-discharge cycling stability reversibility.


2021 ◽  
Author(s):  
Fengling Chen ◽  
Jiannan Lin ◽  
Yifan Chen ◽  
Binbin Dong ◽  
Chujun Yin ◽  
...  

Abstract Nickel-rich cathode materials are increasingly being applied in commercial lithium-ion batteries to realize higher specific capacity as well as improve energy density. However, low structural stability and rapid capacity decay at high voltage and temperature hinder their rapid large-scale application. Herein, a wet chemical method followed by a post-annealing process is utilized to realize the surface coating of tantalum oxide on LiNi0.88Mn0.03Co0.09O2, and the electrochemical performance is improved. The modified LiNi0.88Mn0.03Co0.09O2 displays an initial discharge capacity of ~233 mAh/g at 0.1 C and 174 mAh/g at 1 C after 150 cycles in the voltage range of 3.0-4.4 V at 45 ℃, and it also exhibits an enhanced rate capability with 118 mAh/g at 5 C. The excellent performance is due to the introduction of tantalum oxide as a stable and functional layer to protect the surface of LiNi0.88Mn0.03Co0.09O2, and the surface side reactions and cation mixing are suppressed at the same time without hampering the charge transfer kinetics.


2012 ◽  
Vol 472-475 ◽  
pp. 2452-2457 ◽  
Author(s):  
Xiao Hui Jiang ◽  
Jun Feng Ma ◽  
Jie Cheng ◽  
Jing Rui Fang ◽  
Yong Sun

Cadmium molybdate (CdMoO4) nanoparticles, cube-like crystallites and octahedral microparticles have been successfully synthesized by a molten salt method at 270°C. The structure, morphology and luminescent property of the resultant powders were characterized by X-ray diffraction (XRD), transmission electron microcopy (TEM), scanning electron microcopy (SEM), and photoluminescence (PL), respectively. The resultant samples are a pure phase of CdMoO4 and without any impurities. PL spectra results show that the optical properties of CdMoO4 particles are strongly relied on their morphologies.


Sign in / Sign up

Export Citation Format

Share Document