Effect on Electrochemical Performance of Cr and Ni Substitution in LiCoO2 Cathode Materials

2020 ◽  
Vol 307 ◽  
pp. 113-118
Author(s):  
Nor Syamilah Syamimi Mohd Abdillih ◽  
Norlida Kamarulzaman ◽  
Kelimah Elong ◽  
Mohd Sufri Mastuli

The effect of Cr and Ni substitution on electrochemical performance of layered LiCo0.9M0.1O2 (M=Cr and Ni) has been investigated. Partial substituted of LiCo0.9Cr0.1O2 and LiCo0.9Ni0.1O2 has been synthesized using a self-propagating combustion (SPC) method with annealing temperature of 700 ̊ C for 24 h. The starting materials used were metal nitrates and citric acid act as a combustion agent. The phase and crystalinity of the materials were characterized using X-Ray Diffraction (XRD) and results showed that the single phase and pure materials were obtained with no impurity peaks were detected. The morphology and particle sizes of samples also analyzed using Field Emission Scanning Electron Microcopy (FESEM). The electrochemical performances of the materials were measured by its charge-discharge cycling which carried out in the voltage range of 2.5 V to 4.5 V. The results from charge-discharge studies found that LiCo0.9Ni0.1O2 has better specific discharge capacity compared with LiCo0.9Cr0.1O2.

2020 ◽  
Vol 301 ◽  
pp. 195-201
Author(s):  
Nor Syamilah Syamimi Mohd Abdillih ◽  
Norlida Kamarulzaman ◽  
Kelimah Elong ◽  
Nurhanna Badar ◽  
Mohd Sufri Mastuli

LiCo0.9X0.1O2 (where X=Mn and Fe) were synthesized using self-propagating combustion (SPC) method using citric acid as a combustion agent. The precursors of LiCo0.9X0.1O2 were annealed at a temperature of 800 °C at 24 h. The phase and crystalinity of the materials were characterized using X-Ray Diffraction (XRD). All the materials were observed to be single and pure phase with no impurity peaks detected. The morphology and particle sizes of the materials were also analyzed using Field Emission Scanning Electron Microcopy (FESEM). Finally, the electrochemical performance of the materials was studied using charge-discharge cycling in the voltage range of 2.5 to 4.3 V. Based on the results from charge-discharge studies, Mn substituted cathode materials exhibit better specific discharge capacity compared with Fe substituted cathode materials.


2011 ◽  
Vol 197-198 ◽  
pp. 1285-1288 ◽  
Author(s):  
Chang Jiu Liu ◽  
Shi Juan Chen ◽  
Dan Ma ◽  
Yan Wei Li

Amorphous nickel hydroxide powder codoped with Fe3+ and PO43- was synthesized by micro-emulsion precipitation method combined with rapid freezing technique. The microstructures of the prepared samples were characterized by XRD, SEM, EDS, and Raman spectra. The electrochemical performance of the prepared samples was analyzed by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge tests. The results showed that this amorphous nickel hydroxide codoped with Fe3+ and PO43- resulted in more structural defects within the nickel hydroxide. The Fe3+ and PO43- codoping could increase the specific discharge capacity and improve the electrochemical reversibility of the amorphous nickel hydroxide.


2010 ◽  
Vol 160-162 ◽  
pp. 554-557
Author(s):  
Gui Yang Liu ◽  
Jun Ming Guo ◽  
Yan Nan Li ◽  
Bao Sen Wang

Spinel LiMn2O4 powders have been prepared at 500 for 5h by solution combustion synthesis in water or ethanol system, using lithium and manganese acetate as raw materials and no fuels. The structure and morphology of the products have been analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemical performance has been charged or discharged in coin-type battery. XRD analysis indicates that the purity and crystallinity of the product prepared in ethanol are much better than these of the product prepared in water. SEM investigation indicates that the particles of the product prepared in ethanol are smaller and more dispersed than these of the products prepared in water. The product prepared in ethanol also exhibits better electrochemical performance than that of the product prepared in water. The initial discharge capacity of the product prepared in ethanol is 120mAh/g, and remains 110mAh/g after 20 cycles, at a current density of 50mA/g and in the voltage range of 3.2-4.35V.


2007 ◽  
Vol 121-123 ◽  
pp. 1265-1268 ◽  
Author(s):  
T.A. Han ◽  
J.P. Tu ◽  
Jian Bo Wu ◽  
Y.F. Yuan ◽  
Y. Li

Al-substituted α-Ni(OH)2 was synthesized by a chemical co-precipitation. The as-prepared α-Ni(OH)2 particles were characterized by the means of X-ray diffraction (XRD) and scanning electron microscope (SEM). The obtained α-Ni(OH)2 particles were well crystallized, spherical shape with the particle sizes of 20-35 nm. The electrochemical performance of β-Ni(OH)2 electrode with addition of nanosized α-Ni(OH)2 was investigated by galvanostatic charge-discharge tests. The nanosized α-Ni(OH)2 as additive in the commercial microsized spherical β-Ni(OH)2 electrode improved the discharge capability. As compared to commercial β-Ni(OH)2 electrode, the electrode with nanosized α-Ni(OH)2 exhibited excellent better charge-discharge cycling stability. It may be a promising positive active material for alkaline secondary batteries.


2012 ◽  
Vol 560-561 ◽  
pp. 860-863
Author(s):  
Fang Hu ◽  
Mo Ran Sun ◽  
Yu Sheng Wu ◽  
Chun Hua Zhang

Li1-xLaxV3O8 cathode materials has been synthesized by pechini sol-gel method. The electrochemical performances of Li1-xLaxV3O8(x=0-0.05) have been studied by X-ray diffraction (XRD), galvanostatic charge-discharge, and cyclic voltammetric (CV). The results showed that the optimal content of the La3+ doping in LiV3O8 was x=0.01, and the first discharge capacity of Li0.99La0.01V3O8 sample in the voltage range of 2.0-4.0V was 230mAhg-1, which was much higher than that of LiV3O8 (200mAhg-1). The Li0.99La0.01V3O8 cathode also showed higher discharge voltage plateau than LiV3O8 cathode from the CV curves.


2011 ◽  
Vol 287-290 ◽  
pp. 1416-1419
Author(s):  
Chang Jiu Liu ◽  
Pei Pei Li ◽  
Liang Hua Huang

The effect of carbon nanotubes (CNTs) addition on the electrochemical performance of Al doped α-nickel hydroxide is studied. The microstructure and electrochemical performance of the prepared samples are characterized by XRD,SEM, electrochemical impedance spectroscopy, charge-discharge at different rate, and Charge-discharge cycling stability tests. The results show that the addition of CNTs could decrease the electrochemical reaction impedance dramatically, increase the specific discharge capacity at higher rate, and improve the Charge-discharge cycling stability reversibility.


2018 ◽  
Vol 71 (7) ◽  
pp. 497
Author(s):  
Lingfang Li ◽  
Changling Fan ◽  
Jiaxing Yang

A novel composite cathode for lithium ion batteries, Li3V2(PO4)3‖Li2NaV2(PO4)3/C, was synthesized by a sol-gel method. Cetyltrimethylammonium bromide (CTAB) was used as a surfactant while polyvinylidene difluoride (PVDF) was the carbon source. X-ray diffraction (XRD) and Raman results showed that the components of this composite are monoclinic Li3V2(PO4)3, rhombohedral Li2NaV2(PO4)3 and an amorphous carbon-coating. Four potential plateaus occur at the charge/discharge curves and the longest plateau is observed at a potential of 3.8/3.7 V. Therefore, the alkali metal ion intercalation and deintercalation mostly occur at this potential, which is different to that observed for Li3V2(PO4)3. In addition to the stable working potential, this composite also possesses an outstanding electrochemical performance. The sample containing 8.32 % carbon content delivers a capacity of 119 mAh g−1 at 0.2 C rate and 87 mAh g−1 at 12 C. After 50 charge/discharge cycles at 1 C, a coulombic efficiency of 98.4 % is maintained. This enhancement of the electrochemical performance could be attributed to the synergistic effect between monoclinic Li3V2(PO4)3 and rhombohedral Li2NaV2(PO4)3.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6760
Author(s):  
Mustafa Khan ◽  
Xuli Ding ◽  
Hongda Zhao ◽  
Xinrong Ma ◽  
Yuxin Wang

Carbon–selenium composite positive electrode (CSs@Se) is engineered in this project using a melt diffusion approach with glucose as a precursor, and it demonstrates good electrochemical performance for lithium–selenium batteries. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with EDS analysis are used to characterize the newly designed CSs@Se electrode. To complete the evaluation, electrochemical characterization such as charge–discharge (rate performance and cycle stability), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) tests are done. The findings show that selenium particles are distributed uniformly in mono-sized carbon spheres with enormous surface areas. Furthermore, the charge–discharge test demonstrates that the CSs@Se cathode has a rate performance of 104 mA h g−1 even at current density of 2500 mA g−1 and can sustain stable cycling for 70 cycles with a specific capacity of 270 mA h g−1 at current density of 25 mA g−1. The homogeneous diffusion of selenium particles in the produced spheres is credited with an improved electrochemical performance.


2018 ◽  
Vol 8 (3) ◽  
pp. 32
Author(s):  
Peiyuan Ji ◽  
Yi Xi ◽  
Chengshuang Zhang ◽  
Chuanshen Wang ◽  
Chenguo Hu ◽  
...  

Porous materials have superior electrochemical performance owing to its their structure, which could increase the specific and contact area with the electrode. The spinel Li4Mn5O12 has a three-dimensional tunnel structure for a better diffusion path, which has the advantage of lithium ion insertion and extraction in the framework. However, multi-space spherical materials with single morphologies are rarely studied. In this work, waxberry-like and raspberry-like nanospheres for Li4Mn5O12 have been fabricated by the wet chemistry and solid-state methods for the first time. The diameter of a single waxberry- and raspberry-like nanosphere is about 1 μm and 600 nm, respectively. The specific capacitance of Li4Mn5O12 was 535 mF cm−2 and 147.25 F g−1 at the scan rate of 2 mV s−1, and the energy density was 110.7 Wh kg−1, remaining at 70% after 5000th charge-discharge cycles. Compared with raspberry-like nanosphere Li4Mn5O12, the waxberry-like nanoporous spinel Li4Mn5O12 shows the better electrochemical performance and stability; furthermore, these electrochemical performances have been improved greatly compared to the previous studies. All these results indicate that the waxberry-like nanoporous spinel Li4Mn5O12 could provide a potential application in high performance supercapacitors.


MRS Advances ◽  
2019 ◽  
Vol 4 (13) ◽  
pp. 777-782 ◽  
Author(s):  
Rahul Singhal ◽  
Justin Fagnoni ◽  
David Thorne ◽  
Peter K. LeMaire ◽  
Xavier Martinez ◽  
...  

ABSTRACTGraphene oxide (GO)/MnO2 nanocomposites were synthesized by adding KMnO4 in a solution of water and ethanol (3:1), containing 10 mg of GO. Brown precipitates were obtained after a continuous stirring for 1 hr. The precipitates were then washed with deionized water (DI) water and dried to obtain the MnO2-GO nanocomposites. Pure MnO2 was also synthesized using the same method without GO for the comparison. X-ray diffraction pattern confirm δ-MnO2 type of MnO2 with birnessite type MnO2 structure. The TEM images show the average diameter of MnO2 nanorods as 15 nm. Electrochemical characterizations were carried out in an aqueous solution of 3M KOH. Charge-discharge studies were carried out between 1A/g to 20 A/g current range. The MnO2-GO nanocomposites showed improved electrochemical performances. The capacitance of MnO2 and MnO2-GO electrodes was found to be as 300 F/g, and 350 F/g, respectively at a current of 0.5 A/g.


Sign in / Sign up

Export Citation Format

Share Document