scholarly journals Estimation of Net Radiation using satellite based data inputs

Author(s):  
S. V. S. Sai Krishna ◽  
P. Manavalan ◽  
P. V. N. Rao

Daily net surface radiation fluxes are estimated for Indian land mass at spatial grid intervals of 0.1 degree. Two approaches are employed to obtain daily net radiation for four sample days viz., November 19, 2013, December 16, 2013, January 8, 2014 and March 20, 2014. Both the approaches compute net shortwave and net longwave fluxes, separately and sum them up to obtain net radiation. The first approach computes net shortwave radiation using daily insolation product of Kalpana VHRR and 15 days time composited broadband albedo product of Oceansat OCM2. The net outgoing longwave radiation is computed using Stefan Boltzmann equation corrected for humidity and cloudiness. In the second approach, instantaneous clear-sky net-shortwave radiation is estimated using computed clear-sky incoming shortwave radiation and the gridded MODIS 16-day time composited albedo product. The net longwave radiation is obtained by estimating outgoing and incoming longwave radiation fluxes, independently. In this, MODIS derived surface emissivity and skin temperature parameters are used for estimating outgoing longwave radiation component. In both the approaches, surface air temperature data required for estimation of net longwave radiation fluxes are extracted from India Meteorological Department’s (IMD) Automatic Weather Station (AWS) records. Estimates by the two different approaches are evaluated by comparing daily net radiation fluxes with CERES based estimates corresponding to the sample days, through statistical measures. The estimated all sky daily net radiation using the first approach compared well with CERES SYN1deg daily average net radiation with r<sup>2</sup> values of the order of 0.7 and RMS errors of the order of 8&ndash;16 w/m<sup>2</sup>.

2021 ◽  
Author(s):  
Ge Wang ◽  
Lin Han

&lt;p&gt;This study analyses the diurnal seasonal mean and the seasonal and annual variation in the radiation budget at the Ali Meteorological Bureau observation station in the northern Tibetan Plateau for 2019. The results indicate that the daily average variation in incidental shortwave and reflected radiation across all seasons in the Ali area had typical unimodal symmetry. The average daily variation in incidental shortwave radiation was in phase with reflected radiation, but the amplitude of the incidental shortwave radiation was greater than that of reflected radiation. The daily amplitude, daily average, and monthly average upwelling longwave radiation were greater than those for downwelling radiation, and the diurnal cycle of downwelling atmospheric radiation lagged behind that of upwelling longwave radiation. The daily amplitude of surface net radiation in winter in the Ali area was less than in other seasons, as expected, and the seasonal transformation had a great impact on the net radiation for this region. The net radiative energy at the surface was highest in late spring and early summer, which played a decisive role in the formation of terrestrial and atmospheric heating.&lt;/p&gt;


2017 ◽  
Vol 17 (24) ◽  
pp. 15095-15119 ◽  
Author(s):  
Anna Mackie ◽  
Paul I. Palmer ◽  
Helen Brindley

Abstract. We use observations of surface and top-of-the-atmosphere (TOA) broadband radiation fluxes determined from the Atmospheric Radiation Measurement programme mobile facility, the Geostationary Earth Radiation Budget (GERB) and Spinning Enhanced Visible and Infrared Imager (SEVIRI) instruments and a range of meteorological variables at a site in the Sahel to test the ability of the ECMWF Integrated Forecasting System cycle 43r1 to describe energy budget variability. The model has daily average biases of −12 and 18 W m−2 for outgoing longwave and reflected shortwave TOA radiation fluxes, respectively. At the surface, the daily average bias is 12(13) W m−2 for the longwave downwelling (upwelling) radiation flux and −21(−13) W m−2 for the shortwave downwelling (upwelling) radiation flux. Using multivariate linear models of observation–model differences, we attribute radiation flux discrepancies to physical processes, and link surface and TOA fluxes. We find that model biases in surface radiation fluxes are mainly due to a low bias in ice water path (IWP), poor description of surface albedo and model–observation differences in surface temperature. We also attribute observed discrepancies in the radiation fluxes, particularly during the dry season, to the misrepresentation of aerosol fields in the model from use of a climatology instead of a dynamic approach. At the TOA, the low IWP impacts the amount of reflected shortwave radiation while biases in outgoing longwave radiation are additionally coupled to discrepancies in the surface upwelling longwave flux and atmospheric humidity.


2017 ◽  
Author(s):  
Anna Mackie ◽  
Paul I. Palmer ◽  
Helen Brindley

Abstract. We use observations of surface and top-of-the-atmosphere (TOA) broadband radiation fluxes determined from the Atmospheric Radiation Measurement program Mobile Facility, and GERB/SEVIRI,and a range of meteorological variables, at a site in the Sahel to test the ability of the ECMWF Integrated Forecasting System cycle 43r1 to describe energy budget variability. The model has daily average bias of −12 W m-2 and 18 W m-2 for outgoing longwave and reflected shortwave TOA radiation fluxes, respectively. Using multivariate linear models of observation minus model differences, we attribute radiation flux discrepancies to physical processes, and link surface and TOA fluxes. We find that model biases in surface radiation fluxes are mainly due to a low bias in ice-water path (IWP), poor description of surface albedo, and model-observation differences in surface temperature. At the TOA, the low IWP impacts the amount of reflected shortwave radiation while biases in outgoing longwave radiation are additionally coupled to discrepancies in the surface upwelling longwave flux and atmospheric humidity.


2012 ◽  
Vol 12 (1) ◽  
pp. 3357-3407 ◽  
Author(s):  
S. Gubler ◽  
S. Gruber ◽  
R. S. Purves

Abstract. As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent uncertainties is important. In this study we evaluate one parameterization of clear-sky incoming shortwave radiation (SDR) and diverse parameterizations of clear-sky and all-sky incoming longwave radiation (LDR). In a first step, the clear-sky global SDR is estimated based measured input variables and mean parameter values for hourly time steps during the year 1996 to 2008, and validated using the high quality measurements of seven Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations. Then, twelve clear-sky LDR parameterizations are fitted to the ASRB measurements. One of the best performing LDR parameterizations is chosen to estimate the all-sky LDR based on cloud transmissivity. Cloud transmissivity is estimated using measured and modeled global SDR during daytime. For the night, the performance of several interpolation methods is evaluated. Input variable and parameter uncertainties are assigned to estimate the total output uncertainty of the mentioned models, resulting in a mean relative uncertainty of 10% for the clear-sky direct, 15% for diffuse and 2.5% for global SDR, and 2.5% for the fitted all-sky LDR. Further, a function representing the uncertainty in dependence of the radiation is assigned for each model. Validation of the model outputs shows that direct SDR is underestimated (the mean error (ME) is around −33 W m−2), while diffuse radiation is overestimated (ME around 19 W m−2). The root mean squared error (RMSE) scatters around 60 W m−2 for direct, and 40 W m−2 for diffuse SDR. The best behaviour is found, due to the compensating effects of direct and diffuse SDR, for global SDR with MEs around −13 W m−2 and RMSEs around 40 W m−2. The ME of the fitted all-sky LDR is around ±10 W m−2, and the RMSE goes up to 40 W m−2. This is obtained by linearly interpolating the average of the cloud transmissivity of the four hours of the preceeding afternoon and the following morning.


2015 ◽  
Vol 19 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Ayan H. Chaudhuri ◽  
Rui M. Ponte

Abstract The authors examine five recent reanalysis products [NCEP Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Japanese 25-year Reanalysis Project (JRA-25), Interim ECMWF Re-Analysis (ERA-Interim), and Arctic System Reanalysis (ASR)] for 1) trends in near-surface radiation fluxes, air temperature, and humidity, which are important indicators of changes within the Arctic Ocean and also influence sea ice and ocean conditions, and 2) fidelity of these atmospheric fields and effects for an extreme event: namely, the 2007 ice retreat. An analysis of trends over the Arctic for the past decade (2000–09) shows that reanalysis solutions have large spreads, particularly for downwelling shortwave radiation. In many cases, the differences in significant trends between the five reanalysis products are comparable to the estimated trend within a particular product. These discrepancies make it difficult to establish a consensus on likely changes occurring in the Arctic solely based on results from reanalyses fields. Regarding the 2007 ice retreat event, comparisons with remotely sensed estimates of downwelling radiation observations against these reanalysis products present an ambiguity. Remotely sensed observations from a study cited herewith suggest a large increase in downwelling summertime shortwave radiation and decrease in downwelling summertime longwave radiation from 2006 and 2007. On the contrary, the reanalysis products show only small gains in summertime shortwave radiation, if any; however, all the products show increases in downwelling longwave radiation. Thus, agreement within reanalysis fields needs to be further checked against observations to assess possible biases common to all products.


1985 ◽  
Vol 6 ◽  
pp. 238-241 ◽  
Author(s):  
Takashi Yamanouchi ◽  
Sadao Kawaguchi

Effects of drifting snow are examined from measurements of radiation fluxes at Mizuho Station in the katabatic wind zone, Antarctica. A good correlation is found between the difference of downward longwave fluxes measured at two heights and wind speed used as an index of drifting snow. The wind increases the downward flux at a rate of 2 W m-2/m s-2 when wind speed is higher than 13 m/s. Drifting snow suppresses the net longwave cooling at the surface. Direct solar radiation is depleted greatly by the drifting snow; however, the global flux decreases only slightly, compensated by the large increase of the diffuse flux, at a rate of about 1% for each 1 m/s increase in wind speed. At Mizuho Station, the effect on longwave radiation prevails throughout the year. The relation between snow drift content and wind speed is obtained from shortwave optical depth measurements as a function of wind speed. A simple parameterization of radiative properties is given.


2020 ◽  
Vol 12 (11) ◽  
pp. 1834
Author(s):  
Boxiong Qin ◽  
Biao Cao ◽  
Hua Li ◽  
Zunjian Bian ◽  
Tian Hu ◽  
...  

Surface upward longwave radiation (SULR) is a critical component in the calculation of the Earth’s surface radiation budget. Multiple clear-sky SULR estimation methods have been developed for high-spatial resolution satellite observations. Here, we comprehensively evaluated six SULR estimation methods, including the temperature-emissivity physical methods with the input of the MYD11/MYD21 (TE-MYD11/TE-MYD21), the hybrid methods with top-of-atmosphere (TOA) linear/nonlinear/artificial neural network regressions (TOA-LIN/TOA-NLIN/TOA-ANN), and the hybrid method with bottom-of-atmosphere (BOA) linear regression (BOA-LIN). The recently released MYD21 product and the BOA-LIN—a newly developed method that considers the spatial heterogeneity of the atmosphere—is used initially to estimate SULR. In addition, the four hybrid methods were compared with simulated datasets. All the six methods were evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) products and the Surface Radiation Budget Network (SURFRAD) in situ measurements. Simulation analysis shows that the BOA-LIN is the best one among four hybrid methods with accurate atmospheric profiles as input. Comparison of all the six methods shows that the TE-MYD21 performed the best, with a root mean square error (RMSE) and mean bias error (MBE) of 14.0 and −0.2 W/m2, respectively. The RMSE of BOA-LIN, TOA-NLIN, TOA-LIN, TOA-ANN, and TE-MYD11 are equal to 15.2, 16.1, 17.2, 21.2, and 18.5 W/m2, respectively. TE-MYD21 has a much better accuracy than the TE-MYD11 over barren surfaces (NDVI < 0.3) and a similar accuracy over non-barren surfaces (NDVI ≥ 0.3). BOA-LIN is more stable over varying water vapor conditions, compared to other hybrid methods. We conclude that this study provides a valuable reference for choosing the suitable estimation method in the SULR product generation.


2005 ◽  
Vol 22 (10) ◽  
pp. 1473-1479 ◽  
Author(s):  
C. Ruckstuhl ◽  
R. Philipona

Abstract Atmospheric radiation flux measurements and the resulting surface radiation budget are important quantities for greenhouse effect and climate change investigations. Accurate net shortwave and longwave fluxes, in conjunction with numerical algorithms, also allow monitoring of the radiative effect of clouds and the nowcasting of the cloud amount. To achieve certain advantages on the accuracy of flux measurements a new instrument is developed that measures downward and upward shortwave and longwave radiation with the same sensors. Two high-quality instruments—a pyranometer for shortwave and a pyrgeometer for longwave measurements—are mounted on a pivotable sensor head, which is rotated up and down in 10-min intervals. To keep the instrument domes free from dew and ice, and to minimize the pyranometer thermal offset, both sensors are ventilated with slightly heated air. Additionally, a ventilated temperature and humidity sensor is integrated in the new instrument. The combination of measurements of radiation fluxes, temperature, and humidity allows for instrument use for autonomous and automatic cloud amount detection. The Temperature, Humidity, Radiation and Clouds (TURAC) sensor has been successfully tested under harsh alpine winter conditions, as well as under moderate lowland conditions. Comparisons to reference instruments showed all radiation fluxes to be within a maximum bias and rms difference of 1.6% or 1.4 W m−2 on daily averages.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 62 ◽  
Author(s):  
Bijan Seyednasrollah ◽  
Mukesh Kumar

Radiation is the major driver of snowmelt, and, hence, its estimation is critically important. Net radiation reaching the forest floor is influenced by vegetation density. Previous studies in mid-latitude conifer forests have confirmed that net radiation decreases and then subsequently increases with increasing vegetation density, for clear sky conditions. This leads to the existence of a net radiation minimum at an intermediate vegetation density. With increasing cloud cover, the minimum radiation shifts toward lower densities, sometimes resulting in a monotonically increasing radiation with vegetation density. The net radiation trend, however, is expected to change across sites, affecting the magnitude and timing of individual radiation components. This research explores the variability of net radiation on a snow-covered forest floor for different vegetation densities along a latitudinal gradient. We especially investigate how the magnitude of minimum/maximum radiation and the corresponding vegetation density change with the site geographical location. To evaluate these, the net radiation is evaluated using the Forest Radiation Model at six different locations in predominantly white spruce (Picea glauca) canopy cover across North America, ranging from 45 to 66° N latitudes. Results show that the variation of net radiation with vegetation density considerably varies with latitude. In higher latitude forests, the magnitude of net radiation is generally smaller, and the minimum radiation is exhibited at relatively sparser vegetation densities, under clear sky conditions. For interspersed cloudy sky conditions, net radiation non-monotonically varies with latitude across the sites, depending on the seasonal sky cloudiness and air temperature. The latitudinal sensitivity of net radiation is lower on north-facing hillslopes than on south-facing sites.


2019 ◽  
Vol 19 (20) ◽  
pp. 13227-13241 ◽  
Author(s):  
Stephan Nyeki ◽  
Stefan Wacker ◽  
Christine Aebi ◽  
Julian Gröbner ◽  
Giovanni Martucci ◽  
...  

Abstract. The trends of meteorological parameters and surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) were analysed at four stations (between 370 and 3580 m a.s.l.) in Switzerland for the 1996–2015 period. Ground temperature, specific humidity, and atmospheric integrated water vapour (IWV) trends were positive during all-sky and cloud-free conditions. All-sky DSR and DLR trends were in the ranges of 0.6–4.3 W m−2 decade−1 and 0.9–4.3 W m−2 decade−1, respectively, while corresponding cloud-free trends were −2.9–3.3 W m−2 decade−1 and 2.9–5.4 W m−2 decade−1. Most trends were significant at the 90 % and 95 % confidence levels. The cloud radiative effect (CRE) was determined using radiative-transfer calculations for cloud-free DSR and an empirical scheme for cloud-free DLR. The CRE decreased in magnitude by 0.9–3.1 W m−2 decade−1 (only one trend significant at 90 % confidence level), which implies a change in macrophysical and/or microphysical cloud properties. Between 10 % and 70 % of the increase in DLR is explained by factors other than ground temperature and IWV. A more detailed, long-term quantification of cloud changes is crucial and will be possible in the future, as cloud cameras have been measuring reliably at two of the four stations since 2013.


Sign in / Sign up

Export Citation Format

Share Document