maximum deviation
Recently Published Documents


TOTAL DOCUMENTS

871
(FIVE YEARS 260)

H-INDEX

20
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Zhengxun Guo ◽  
Bo Yang ◽  
Yiming Han ◽  
Tingyi He ◽  
Peng He ◽  
...  

Phase-locked loop (PLL) is a fundamental and crucial component of a photovoltaic (PV) connected inverter, which plays a significant role in high-quality grid connection by fast and precise phase detection and lock. Several novel critical structure improvements and proportional-integral (PI) parameter optimization techniques of PLL were proposed to reduce shock current and promote the quality of grid connection at present. However, the present techniques ignored the differential element of PLL and did not acquire ideal results. Thus, this paper adopts Aquila optimizer algorithm to regulate the proportional-integral-differential (PID) parameters of PLL for smoothing power fluctuation and improving grid connection quality. Three regulation strategies (i.e., PLL regulation, global regulation, and step regulation) are carefully designed to systematically and comprehensively evaluate the performance of the proposed method based on a simulation model in MATLAB/Simulink, namely, “250-kW Grid-Connected PV Array”. Simulation results indicate that PLL regulation strategy can effectively decrease power fluctuation and overshoot with a short response time, low complexity, and time cost. Particularly, the Error(P) and the maximum deviation of output power under optimal parameters obtained by PLL strategy are decreased by 418 W and 12.5 kW compared with those under initial parameters, respectively.


2022 ◽  
Author(s):  
Zhen Jia ◽  
Xuan Wang ◽  
Yongping Shen ◽  
Yilian Xie ◽  
Xue Gong ◽  
...  

Abstract Spinning is widely used in aerospace and automobile industries, and non-axisymmetric spinning is developing with the increasing demand of irregular shape forming. Based on this, an avoidance groove at the middle of the tube (AGMT) which has potential application value in aircraft structure weight reduction is proposed and formed by using non-axisymmetric die-less spinning. The roller path is analyzed. The relationship between radial displacement of roller and the rotation angle of the tube is deduced. Based on the roller path, 3D finite element model is established. Then, the AGMT spinning experiment is carried out to verify the simulation results. The maximum deviation between the simulation and experimental results is less than 15%. It is indicated that the 3D finite element model established in this study is reliable and the method for the AGMT forming is feasible. The wall thickness and strain-stress distributions are analyzed. The severe wall thicken and thinning occur in the transition zones, so more attention should be paid to these positions. The depth of the groove has great impact on the forming quality. Deeper groove results in distortion and larger wall thickness difference. The research laid a foundation for the further development and optimization of the AGMT spinning.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 90
Author(s):  
Clément Devic ◽  
Johann Plagnard ◽  
Mélodie Munier

For technical and radioprotection reasons, it has become essential to develop new dosimetric tools adapted to the specificities of computed tomography (CT) to ensure precise and efficient dosimetry since the current standards are not suitable for clinical use and for new CT technological evolution. Thanks to its many advantages, plastic scintillating fibers (PSF) is a good candidate for more accurate and personalized real-time dosimetry in computed tomography, and the company Fibermetrix has developed a new device named IVISCAN® based on this technology. In this study, we evaluated performances of IVISCAN® and associated uncertainties in terms of dose-rate dependence, angular dependence, stability with cumulative dose, repeatability, energy dependence, length dependence, and special uniformity in reference and clinical computed tomography beam qualities. For repeatability, the standard deviation is less than 0.039%, and the absolute uncertainty of repeatability lies between 0.017% and 0.025%. The deviation between IVISCAN® and the reference regarding energy dependence is less than 1.88% in clinical use. Dose rate dependence results show a maximum deviation under ±2%. Angular dependence standard deviation σ is 0.8%, and the absolute uncertainty was 1.6%. We observed 1% of variation every 50 Gy steps up to a cumulative dose of 500 Gy. Probe response was found to be independent of the PSF length with a maximum deviation < 2.7% between the IVISCAN® probe and the 1 cm PSF probe. The presented results demonstrated that IVISCAN® performances are in accordance with metrology references and the international standard IEC61674 relative to dosemeters used in X-ray diagnostic imaging and then make it an ideal candidate for real-time dosimetry in CT applications.


Author(s):  
İbrahim Can Güleryüz ◽  
Barış Yılmaz

This paper proposes a reliable mathematical model that can be used for design stage of new air disc brake (ADB) development projects. All three phases of braking mechanism (brake apply, brake release and automatic adjustment) are modelled by Matlab Simulink in consideration of hysteresis and adjuster performance experiments. Firstly, mathematical relations of each friction interfaces of air disc brake components are derived and mathematical equations adapted to the Simulink model. To ensure the accuracy of ADB system model, hysteresis and adjuster performance experiments are conducted on a prototype disc brake mechanism supported by a test fixture. This prototype single piston disc brake mechanism is fitted to wheel size in 17.5″ used in heavy commercial vehicles. The predicted clamping force, mechanical ratio, brake efficiency and adjuster rate results are verified by using experimental data. The maximum deviation in hysteresis results is 3.08%. Besides, the maximum deviation in adjuster performance results is 7.15%. The numerically and experimentally obtained hysteresis and adjuster performance results show good agreement. The proposed model is modified in consideration of mechanism supported by a brake calliper for predicting actual performance of single piston brake mechanism on the brake level. The hysteresis and the adjuster performance analyses are conducted by using modified ADB model to calculate the hysteresis based brake efficiency and the adjuster rate. The brake efficiency of new single piston brake design provides similar efficiency as the twin piston disc brake used in heavy commercial vehicles.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Sajed Naiemi Dizajyekan ◽  
Gholamhossein Shahgholi ◽  
Adel Rezvanivand Fanaei ◽  
Vahid Rostampour ◽  
Vali Rasooli Sharabiani ◽  
...  

Cyclone is often used in the Industry due to its low maintenance costs, simple design, and ease of operation. This work presents both experimental and simulation evaluation on the effect of inlet velocity and mass flow rate on the performance of a wheat conveying cyclone. According to the great importance of the pressure drop and separation efficiency on the separation phenomenon in the cyclone, a comprehensive study has been conducted in this regard. A computational fluid dynamics (CFD) simulation was realized using a Reynolds stress turbulence model, and particle-air interactions were modeled using a discrete phase model. The result showed a good agreement between the measured value and CFD simulation on the pressure drop and tangential velocity with a maximum deviation of 6.8%. It was found that the separation efficiency increased with inlet velocity up to 16 m s−1 but decreased slightly at a velocity of 20 m s−1. The pressure drop increased proportionally with inlet velocity. However, optimum performance with the highest separation efficiency (99%) and acceptable pressure drop (416 Pa) was achieved at the inlet velocity of 16 m s−1 and mass flow rate of 0.01 kg s−1.


2021 ◽  
Vol 32 (01) ◽  
Author(s):  
Ting Hu ◽  
Lizhang Xie ◽  
Lei Zhang ◽  
Guangjun Li ◽  
Zhang Yi

Patient-specific quality assurance (QA) for Volumetric Modulated Arc Therapy (VMAT) plans is routinely performed in the clinical. However, it is labor-intensive and time-consuming for medical physicists. QA prediction models can address these shortcomings and improve efficiency. Current approaches mainly focus on single cancer and single modality data. They are not applicable to clinical practice. To assess the accuracy of QA results for VMAT plans, this paper presents a new model that learns complementary features from the multi-modal data to predict the gamma passing rate (GPR). According to the characteristics of VMAT plans, a feature-data fusion approach is designed to fuse the features of imaging and non-imaging information in the model. In this study, 690 VMAT plans are collected encompassing more than ten diseases. The model can accurately predict the most VMAT plans at all three gamma criteria: 2%/2 mm, 3%/2 mm and 3%/3 mm. The mean absolute error between the predicted and measured GPR is 2.17%, 1.16% and 0.71%, respectively. The maximum deviation between the predicted and measured GPR is 3.46%, 4.6%, 8.56%, respectively. The proposed model is effective, and the features of the two modalities significantly influence QA results.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guoping Zheng ◽  
Jurij Karlovsek

Universal tapered segmental ring system has been adopted to assemble tangent and curve line elements into the shield tunnels through the relative rotation of the adjacent front and rear rings, which simplifies the formwork design, demonstrates strong universality, and is easy for quality assurance. To evaluate the position deviation caused by the taper value and propose the assembly scheme for the contractor, this article developed the universal tapered segmental ring assembly simulation technology. Firstly, the assembly procedure of the universal tapered segmental ring system both in normal case and in special case is introduced, including the interval tunnel of special rings and actual engineering that needs deviation correction. Secondly, relevant core algorithms are introduced in detail, including the coordinate position algorithm of horizontal and vertical curves and computer graphic algorithm of spatial point rotating around any axis. Finally, this article takes a background metro line tunnel as a case to validate the algorithm and illustrate the assessment methodology of universal tapered segmental ring assembly accuracy. The sections with maximum deviation are found as an alert ahead of the shield advancing. In conclusion, the algorithms and methodology proposed in this article illustrate the excellent suitability and robustness in shield tunnels adopting a universal tapered segmental ring system in the stage of both design and construction.


Author(s):  
Marco Beyer ◽  
Benedek Marozsak ◽  
Doriane Dam ◽  
Olivier Parisot ◽  
Marine Pallez-Barthel ◽  
...  

AbstractIn precision agriculture, pesticides and other inputs shall be used precisely when (and where) they are needed. European Directive 2009/128/EC calls for respecting the principles of integrated pest management (IPM) in the member states. To clarify the question, when, for instance, fungicide use is needed, the well-established economic principle of IPM may be used. This principle says that pests shall be controlled when the costs of control correspond with the damage the pests will cause. Disease levels corresponding with the costs of control are referred to as control thresholds in IPM. Several models have been developed in plant pathology to predict when epidemics will occur, but hardly any of these models predicts a control threshold directly limiting their usefulness for answering the question when pest control is needed according to the principles of IPM. Previously, we quantified the temporal distance between critical rainfall periods and the breaking of the control threshold of Zymoseptoria tritici on winter wheat as being affected by temperature, based on data from 52 field experiments carried out in Luxembourg from 2005 to 2016. This knowledge was used to construct the ShIFT (SeptorIa ForecasT, https://shift.list.lu/) model, which has been validated using external data recorded between 2017 and 2019. Within the efficacy period of a systemic fungicide, the model allowed correct predictions in 84.6% of the cases, while 15.4% of the cases were predicted falsely. The average deviation between the observed and predicted dates of epidemic outbreaks was 0.62 ± 2.4 days with a maximum deviation of 19 days. The observed and predicted dates were closely correlated (r = 0.92, P < 0.0001). Apart from outliers, the forecast model tested here was reliable within the period of efficacy of current commercial fungicides.


2021 ◽  
pp. 1-15
Author(s):  
Xavier Llovet ◽  
Aurélien Moy ◽  
John H. Fournelle

Abstract Electron microprobe-based quantitative compositional measurement of first-row transition metals using their L $\alpha$ X-ray lines is hampered by, among other effects, self-absorption. This effect, which occurs when a broad X-ray line is located close to a broad absorption edge, is not accounted for by matrix corrections. To assess the error due to neglecting self-absorption, we calculate the L $\alpha$ X-ray intensity emitted from metallic Fe, Ni, Cu, and Zn targets, assuming a Lorentzian profile for the X-ray line and taking into account the energy dependence of the mass absorption coefficient near the absorption edge. We find that calculated X-ray intensities depart increasingly, for increasing electron beam energy, from those obtained assuming a narrow X-ray line and a single fixed absorption coefficient (conventional approach), with a maximum deviation of $\sim$ 15% for Ni and of $\sim$ 10% for Fe. In contrast, X-ray intensities calculated for metallic Zn and Cu do not differ significantly from those obtained using the conventional approach. The implications of these results for the analysis of transition-metal compounds by electron probe microanalysis as well as strategies to account for self-absorption effects are discussed.


2021 ◽  
Author(s):  
◽  
Campbell Matthews

<p>Zinc oxide nanowires are a semiconducting material that has many uses in electronic applications. In particular, ZnO nanowires have been used in field effect transistors and applied as sensors for the detection of gases, biomolecules, UV light and as pressure sensors. ZnO nanowires can be fabricated using many different methods, but most require the use of high tempertures and have extensive setup costs. Hydrothermal growth, however, provides a cheap and low temperture method for growing ZnO nanowires. Much work has been done on the synthesis and charcetristaion of ZnO nanowires grown using hydrothermal growth, in partiuclar for photovoltaic applications. Little work has been done on the performace of hydrothermally grown ZnO nanowires in field effect transtors.  This thesis looks at applying hydrothermally grown ZnO nanowires as field effect transistors (FET). The FETs are characterised and developed with the intention of using them in senseing applications. The nanowire FET structure is optimised for sensing by developing a method that constrains the nanowires to exclusively lateral growth. A Ti capping layer is fabricated on top of a ZnO seed layer. The ZnO seed layer is then etched with dilute acid so that the Ti layer overhangs the ZnO. This acts as a physical barrier to vertical wire growth from the ZnO seed layer. The maximum deviation of the nanowires from the horizontal can be controlled by etching for different times.  Two device types are fabricated using different size nanowires. One uses large nanowires, or nanorods (diameter 400 nm), while the second device type uses a hybrid structure of large nanorods with much thinner nanowires (diameter 20 nm) growing off them. Both device types are characterised as FETs in dry conditions and also when immersed in a number of different liquids. Two different gating setups are also used with the Si/SiO₂ substrate used as a backgate and a Ag/AgCl electrode inserted into liquid as a topgate.  The large nanorods only show field dependence when wet due to the large capacitance of the elctric double layer and enhanced band bending. The wet nanorods can achieve on/off ratios of 10³. In contrast, the thinner nanowires show field dependence both when dry and when wet. On/off ratios of more than 10⁴ are achieved. In general the nanowires have superior on off ratios and smaller off current due to their larger surface to volume ratio.  Attempts are made to functionalise the nanowires with aptamers so that they can be used as a biosensor. The functionalisation procedure is documented, however the overall procedure proves to be unsuccessful due to the instability and dissolution of the nanowires in tris buffer. The rate of decay in buffer solution is investigated.  Both device types are also tested as gas sensors for humidity and ethanol detection. The nanorods show no apparent detection, while the nanowires show some response to ethanol. Further development of the experimental setup is necessary to better characterise the devices.  Finally future work on these nanowires is discussed and possible improvements proposed for future development as biosensors and gas sensors.</p>


Sign in / Sign up

Export Citation Format

Share Document