aluminum electrode
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 40)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Saret Bun ◽  
Penghour Hong ◽  
Nattawin Chawaloesphosiya ◽  
Sreynich Pang ◽  
Sreyla Vet ◽  
...  

The present work focused on the development and evaluation of a compact electrocoagulation (EC) reactor, combined between EC and clarifier processes in continuous modes for decolorization and turbidity removal, named the integrated electrocoagulation-sedimentation reactor (IECS). The experiments were firstly conducted in the four-liter batch column in order to optimize the EC configuration and operation condition. The removal kinetics were also investigated and predicted for kinetic correlations. After various optimization steps, the IECS reactor was conducted, consisting of EC and clarifier compartments. Liquid flow pattern in EC compartment was examined through resident time distribution technique for defining the number of EC units and divided baffles. In summary, four units of EC were placed in the EC compartment of the IECS reactor with 90% in the width of three baffles. Each EC unit had two pairs of aluminum electrode plats in monopolar arrangement with a 1.5 cm gap and required a current density of 13.5 mA/cm2. For the clarifier compartment, it was mainly designed based on the batch settling test for separating the precipitated particles. The treatment performance of the IECS reactor was tested at different liquid flows in order to reduce the pollutant to a certain level. For the individual condition, liquid flow rates of 3 and 1 L/min were defined for turbidity and color, respectively. If both pollutants are presented simultaneously, a liquid flow rate of 1–2 L/min can be used for decreasing turbidity from 250 to <20 NTU and color from 6000 to <300 ADMI.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1557
Author(s):  
Shunke Liu ◽  
Xiaoyun Zhu ◽  
Jinming Long

Base metal pastes have been widely used in the preparation of ZnO varistor electrodes, and it is important to accurately grasp the relevant mechanisms affecting the conductivity of aluminum electrodes. In this paper, the effect of adding sodium carbonate on the conductive property of aluminum paste was assessed, and the microscopic mechanism during aluminum electrode sintering explored. The results show that adding sodium carbonate can reduce the softening point of glass powder and enhance its fluidity. Sodium carbonate, glass, and aluminum oxide film react together; consequently, the aluminum oxide film is partially dissolved by reaction to produce defects, and there is tight contact at the interface between the aluminum powder particles. The sodium ions will displace the aluminum ions in the alumina, conferring the alumina film with a certain ionic conductivity. At the same time, sodium ions are doped into the aluminum lattice, which causes the aluminum lattice to swell. After sintering, the structure of aluminum electrode is compact and its electrical conductivity is significantly improved. This study is a valuable reference for the theoretical research and the potential applications of aluminum paste.


Author(s):  
Yusuke Tominaga ◽  
Atsushi Mikami ◽  
Akiya Iwamura ◽  
Koji Usami ◽  
Kazuyuki Takeda

Abstract We present an electro-mechano-optical radiofrequency (rf)-to-light signal transducer robust against laser heating and thus operational at room temperature. A metal-free, low-loss metasurface mirror and an aluminum electrode made separately on a Si3N4 membrane oscillator comprise a chain of electro-mechanical and opto-mechanical systems, mediating electrical and optical signals through the (2,2)-mode characteristic oscillation. We demonstrate up-conversion of rf signals at 175.2 MHz by 6 orders of magnitude in frequency to an optical regime with the transfer efficiency of 2.3×10-9, also showing stable operation due to reduced laser heating of the mirror.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Takeuchi ◽  
Hidetaka Asoh

AbstractThe effects of the size and position of an aluminum bipolar electrode (BPE) on the uniformity of formation of anodic porous alumina in an alternating current electric field were investigated. Anodized specimens were dyed, and the resistance was measured after the specimens were anodized again. Phenomena observed during film formation indicated that the BPEs had unique potential distributions that strongly depended on their length and width. The color variations and electrical resistance of the BPEs were symmetrical and varied from the centers of the BPEs to their ends. When multiple BPEs were processed at the same time, their position in the non-uniform electric field was demonstrated to be an important factor for controlling the uniformity of film formation. The best results were obtained when the BPE was placed at the center of the defined space.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012033
Author(s):  
V A Kokshenev ◽  
N E Kurmaev

Abstract Plasma sources based on high-current discharges (up to 20 kA) in vapors of an aluminum electrode material with initiation over the ceramic surface are investigated. Plasma flows with a divergence angle ≤ 20° and a pulse pressure of ~ 106 Pa were obtained. A design of a crowbar spark gap based on a plasma switch with developed plasma sources built into a magnetically insulated transmission line has been proposed and tested. A crowbar mode is implemented in the transmission line with a current of a mega-ampere level with a cut-off of the load circuit from the megajoule generator GIT-12 for the period of discharge of the Marx generator.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2624
Author(s):  
Qizhe Zhang ◽  
Shenghui Wang ◽  
Xinghao Dong ◽  
Mingliang Liu ◽  
Qi Ou ◽  
...  

The traction power supply system of an Electrical Multiple Unit (EMU) often suffers from overvoltage impact. As an important protection device for on-board electrical equipment, the working environment of a roof arrester is worse than that of a power system. In recent years, the explosion failure of the roof arresters of an EMU has occurred from time to time, which seriously endangers the safe operation of high-speed railways. In this paper, the electrical performance test and material micro test of roof arrester in three states of normal, defect, and exploded, are carried out in order to study the internal causes of roof arrester explosion and clarify its deterioration mechanism. Using the DC reference voltage test and leakage current test, the electrical performance differences of normal, defective, and exploded arresters are obtained. By studying the disassembly of an arrester, the appearance characteristics of arrester varistor in three states are obtained. The micro morphology and chemical elements of the varistor are analyzed by Scanning Electron Microscope and Energy Dispersive Spectrometer. The deterioration mechanism of the arrester varistor is then revealed, and preventive measures for the explosion failure of the roof arrester are put forward. The obtained results show that, during the long-term operation of the roof arrester of an EMU, the varistor may be damp, and therefore the aluminum electrode layer and side insulation layer of the varistor may deteriorate. After the deterioration of the aluminum electrode layer, the content of the O element increases, and multiple film structures are formed on the surface. After the deterioration of the side insulating layer, the content of the O element increases, and the surface becomes uneven. Improving the sealing performance requirements of the roof arrester and optimizing the maintenance process can reduce its explosion failure.


2021 ◽  
Vol 57 (5) ◽  
pp. 34-51
Author(s):  
A.K. Shuaibov ◽  
◽  
A.Y. Minya ◽  
A.A. Malinina ◽  
R.V Gritsak ◽  
...  

The characteristics and parameters of an overstressed high-current discharge with a duration of 100–150 ns in air, which was ignited between an aluminum electrode and a chalcopyrite electrode (CuInSe2), are presented. The air pressure was 13.3 and 101.3 kPa. In the process of microexplosions of inhomogeneities on the working surfaces of electrodes in a strong electric field, aluminum vapors and chalcopyrite vapors were introduced into the interelectrode gap, which creates the prerequisites for the synthesis of thin films based on quaternary chalcopyrite – CuAlInSe2. The films synthesized from the products of electrode destruction were deposited on a quartz plate at a distance of 2–3 cm from the center of the discharge gap. The current and voltage pulses across the discharge gap of d = 1 mm, as well as the pulse energy input into the discharge, were investigated. The plasma emission spectra were studied, which made it possible to establish the main decay products of the chalcopyrite molecule and the energy states of atoms and singly charged ions of aluminum, copper and indium, which are formed in the discharge. The reference spectral lines of atoms and ions of aluminum, copper, and indium were established, which can be used to control the process of deposition of thin films of quaternary chalcopyrite. Thin films were synthesized from the degradation products of chalcopyrite molecules and aluminum vapors, which may have the composition of the quaternary chalcopyrite CuAlInSe2; the transmission spectra of the synthesized films in the spectral range of 200–800 nm were studied. By the method of numerical simulation of the plasma parameters of an overstressed nanosecond discharge based on aluminum and chalcopyrite vapors in air by solving the Boltzmann kinetic equation for the electron energy distribution function, the temperature and density of electrons, the specific power losses of the discharge for the main electronic processes and their rate constants depending on the value parameter E/N for plasma of vapor-gas mixtures based on air, aluminum vapor and ternary chalcopyrite were modulated.


Author(s):  
Dmitry Pavlovich Yastrebov ◽  
Oleg Aleksandrovich Belov ◽  
Vladimir Alekseevich Shvetsov ◽  
Andrey Pavlovich Ushakevich ◽  
Gleb Valerievich Kuznetsov ◽  
...  

The article highlights the test results of a non-standard reference electrode made of a stripped of insulation strand of aluminum wiring, which were conducted on board an auxiliary marine vessel PM-15. The potential of the ship’s hull was measured at the same control point using three reference electrodes: silver chloride electrode No. 1; aluminum electrode No. 2; aluminum electrode No. 3. The vessel’s hull potential was measured over five days. All three reference electrodes were used daily. With the help of each electrode, fifty parallel measurements of the potential of the ship’s hull were carried out with a time interval between measurements of 5 seconds. To assess the accuracy of the measurement results, they were processed statistically. The factors that must be taken into account in the development of technologies for manufacturing non-standard reference electrodes are listed: using available inexpensive materials; avoiding expensive equipment in manufacturing the reference electrode; eliminating complex methods of storage of reference electrodes on ships. There has been given a diagram of measuring electrical circuits including the steel hull, a bulwark, a multimeter, a clamping device, switches, a silver chloride reference electrode, aluminum wires, etc. The results of the study can be used on sea-going vessels to organize the control of the protective effect of the hulls of ships and vessels in the absence of standard reference electrodes.


Author(s):  
Savita Dubey ◽  
Amita Joshi ◽  
Rashmi Trivedi ◽  
Parmesh Kumar Chaudhari ◽  
Dharm Pal ◽  
...  

Abstract In the current scenario treatment of industrial waste water is big challenge especially waste water that contain high organic load. Hydrogen peroxide assisted electrocoagulation (EC) process provides better result to treat highly polluted wastewater as compared to EC alone. However, hydrogen peroxide is well known as a strong oxidant, which cast a potential threat to human health. To overcome this problem hydrogen peroxide has been used here for treatment of wastewater in small quantity, and that consume during the process. Therefore the harmful effect of hydrogen peroxide in human and aquatic life could be minimized. This work is an attempt to treat biodigester effluent (BDE) using H2O2 assisted EC processes with respect to chemical oxygen demand (COD) and color reductions. To perform this experiment both iron and aluminum electrodes are used as an electrode material in the presence of H2O2. In case of iron electrode the maximum COD and color reduction efficiency of 98.3 and 83.6% was achieved at the cost of 1.5 Wh/dm3 energy consumption while maximum COD and color removal efficiency of 96.8 and 77.1% with 1.7 Wh/dm3 of energy consumption was observed in the aluminum electrode based EC process. A part from this conventional biological process (i.e., activated sludge treatment, ponds, and lagoon etc.) and physiochemical treatment process (i.e., coagulation, adsorption) provided treatment efficiency of 40–80% hence hydrogen peroxide assisted EC process should a better choice to treat distillery effluent. Furthermore, hybrid EC process was also performed with iron used as anode and aluminum as cathode in the presence of H2O2. Iron electrode based peroxi-EC process provided better result at optimum operating conditions; current density of 114 A/m2, initial COD concentration of 12,000 mg/dm3, initial pH of 7.3, H2O2 concentration of 120 mg/dm3, stirring speed of 120 rpm and electrolysis time of 90 min. The cost estimated for operation is 1.56 US $/m3. Finally, sludge analysis and cost optimization are also incorporated in this article.


Sign in / Sign up

Export Citation Format

Share Document