energetic efficiency
Recently Published Documents


TOTAL DOCUMENTS

686
(FIVE YEARS 174)

H-INDEX

47
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Jack M Moen ◽  
Christopher H Morrell ◽  
Ismayil Ahmet ◽  
Michael G Matt ◽  
Moran Davoodi ◽  
...  

SAN failure, aka sick-sinus syndrome, which features sinus bradycardia, SAN impulse pauses, and irregularity of RR interval rhythms are manifestations of SAN cell dysfunction that increases exponentially with advanced age, i.e., SAN frailty. Abnormalities in intrinsic RR interval variability may be the earliest signatures of SAN cell dysfunction leading to SAN frailty in late life. We measured RR interval variability within EKG time-series prior to and during double autonomic blockade in long-lived C57/BL6 mice at 3 month intervals from 6 months of age until the end of life. Long-lived mice (those that achieved the median cohort lifespan of 24 months and beyond) displayed relatively minor changes in intrinsic RR interval variability prior to 21 months of age. Between 21 and 30 months of age, marked changes in intrinsic RR interval variability signatures in time, frequency, non-linear, and fragmentation domains result in a marked increase in the mean intrinsic RR interval. The effects of autonomic input partially compensated for the prolongation of the mean RR interval by impacting the age-associated deterioration in the RR interval variability signatures toward a youthful pattern. Cross-sectional analyses of other subsets of mice at ages at or beyond the median life span of our longitudinal cohort demonstrated increased non-cardiac, constitutional, whole body frailty, a decrease in energetic efficiency, and an increase in respiratory exchange ratio. In this context, we interpret the progressive increase in intrinsic RR interval variability beyond 21 months of age to be an indication of heartbeat frailty.


2022 ◽  
Vol 11 (1) ◽  
pp. e7611124568
Author(s):  
Denis Carlos Lima Costa ◽  
Lair Aguiar de Meneses ◽  
Mara Líbia Viana de Lima ◽  
Heictor Alves de Oliveira Costa ◽  
Adriane Cristina Fernandes Reis ◽  
...  

The debate to establish a balance between the generation of electricity and the preservation of the environment is, extraordinarily, important. This article proposes, as a short-term solution, the replacement of diesel oil by natural gas in thermoelectric generation. Natural gas emits 75% less pollutants to the environment than diesel and has a similar energetic efficiency. As a strategy for this replacement to occur safely, the computational modeling was developed in a Bioinspired Computing methodology, called Genetic Algorithm (GA). The GA incorporated all the variables of the electricity and natural gas networks, presented in the mathematical modeling. The result was a significant reduction in the level of pollutants emitted, with high stability in the electrical power system.


Author(s):  
Simon Mehling ◽  
Tobias Schnabel ◽  
Jörg Londong

Abstract Carrier-bound titanium dioxide catalysts were used in a photocatalytic ozonation reactor for the degradation of micro-pollutants in real wastewater. A photocatalytic immersion rotary body reactor with 36 cm disk diameter was used, which was irradiated using UV-A LEDs. The rotating disks were covered with catalysts based on stainless steel grids coated with titanium dioxide. The dosing of ozone was carried out through the liquid phase via an external enrichment and a supply system transverse to the flow direction. The influence of irradiation power and ozone dose on the degradation rate for photocatalytic ozonation was investigated. In addition, the performance of the individual processes photocatalysis and ozonation were studied. The degradation kinetics of the parent compounds were determined by LC-MS/MS. First-order kinetics were determined for photocatalysis and photocatalytic ozonation. A maximum reaction rate of the reactor was determined, which could be achieved by both photocatalysis and photocatalytic ozonation. At a dosage of 0.4 mg /mg DOC, the maximum reaction rate could be achieved using 75% of the irradiation power used for sole photocatalysis, allowing increases in the energetic efficiency of photocatalytic wastewater treatment processes. The process of photocatalytic ozonation is suitable to remove a wide spectrum of micro-pollutants from wastewater. HIGHLIGHT within the work, reaction rates for the degradation of micropollutants in real wastewater matrix are presented. due to the number of investigated pollutants as well as the practical investigation conditions, a more precise evaluation of the use of photocatalysis and photocatalytic ozonation for wastewater treatment is possible.


Heritage ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 4629-4646
Author(s):  
Antonio Formisano ◽  
Generoso Vaiano

The safety of the built heritage of our cities towards environmental factors and seismic actions is a pressing need for designers and researchers. The actual trend is to setup effective solutions to reduce thermal dispersions through the building envelope. Contrarily, combined systems able to enhance the resistance of constructions to earthquakes, on the one hand, and, on the other hand, to increase the energetic efficiency of existing buildings are scarcely diffused on the market and are rarely investigated in the scientific literature. In this framework, the seismic design of the new envelope DUO system for seismic-environmental requalification of existing masonry constructions is illustrated in the present paper with reference to a case study in the Neapolitan area. After the geometrical and mechanical characterization of the investigated building is performed, an FEM model of the masonry construction is setup by the SAP2000 analysis program, which has allowed performing pushover analyses. Based on the non-linear seismic response of the construction, an appropriate upgrading design mainly based on the innovative seismic envelope DUO system has been made. The static non-linear analyses applied to the upgraded FEM model of the building have shown a clear increase in performance in terms of strength, stiffness and ductility, thus confirming the effectiveness of the proposed envelope system.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 938
Author(s):  
Aleksandra Janusz-Cygan ◽  
Jolanta Jaschik ◽  
Marek Tańczyk

The agriculture sector in Poland could provide 7.8 billion m3 of biogas per year, but this potential would be from dispersed plants of a low capacity. In the current study, a membrane process was investigated for the upgrading biogas to biomethane that conforms to the requirements for grid gas in Poland. It was assumed that such a process is based on membranes made from modified polysulfone or polyimide, available in the market in Air Products PRISM PA1020 and UBE UMS-A5 modules, respectively. The case study has served an agricultural biogas plant in southern Poland, which provides the stream of 5 m3 (STP) h−1 of biogas with a composition of CH4 (52 vol.%), CO2 (46.3 vol.%), N2 (1.6 vol.%) and O2 (0.1 vol.%), after a pretreatment. It was theoretically shown that this is possible to obtain the biomethane stream of at least 96 vol.% of CH4 purity, with the concentration of the other biogas components below their respective thresholds, as required in Poland for gas fuel “E”, with methane recovery of up to 87.5% and 71.6% for polyimide and polysulfone membranes, respectively. The energetic efficiency of the separation process is comparable for both membrane materials, as expressed by power excess index, which reaches up to 51.3 kWth kWel−1 (polyimide) and 40.7 kWth kWel−1 (polysulfone). In turn, the membrane productivity was significantly higher in the case of the polyimide membrane (up to 38.3 kWth m−2) than those based on the polysulfone one (up to 3.13 kWth m−2).


2021 ◽  
Vol 9 (11) ◽  
pp. 1288
Author(s):  
Ilan Robin ◽  
Anne-Claire Bennis ◽  
Jean-Claude Dauvin

Biofouling is an important factor to consider when calculating the energetic efficiency of tidal farms. Despite the fact that biofouling effects have been widely investigated in the past for naval applications, very few studies concern tidal turbines. This paper proposes a numerical approach to assess the impact of biofouling on tidal turbines, which is efficient for testing many configurations. Two turbulence models are tested (RANS k-ω SST and LES Smagorinsky) for the motionless blade case to validate them. Then we chose to use the Smagorinsky model for the case of a complete tidal turbine rotor with realistically fouled blades. The pressure coefficient is strongly affected by the barnacle in the motionless blade case and the power coefficient is slightly degraded in the complete rotor case. Motionless blade cases do not represent the real biofouling behaviour for two reasons. First, sessile species settle in the down flow part of the chord where their impact is less important. Then, the surrounding turbulence provoked by the blades rotation in the rotor case reduces the impact of biofouling. In the wake, biofouling generates small vortexes that propagate into the larger ones, causing them to spread their energy.


2021 ◽  
Vol 13 (22) ◽  
pp. 12692
Author(s):  
Alexandre L. N. Vieira ◽  
Raul D. S. G. Campilho ◽  
Francisco J. G. Silva ◽  
Luís P. Ferreira

Thermoplastic injection is currently employed in different industrial fields. This process has significantly evolved over the years, and injection machine manufacturers are continuously forced to innovate, to improve the energetic efficiency, aiming to reduce costs, improve competitiveness, and promote environmental sustainability. This work focuses on the development of a novel, profitable, and environmentally friendly plastic over-injection equipment of small metallic parts for the automotive industry, to be applied in a bowden cable production line, to cover the zamak terminations with plastic, or produce terminations entirely made of plastic. The work is based on an over-sized existing solution. The operating parameters required for the work are quantified, and all machine parts are designed separately to achieve the required functionality. Known approaches are finally used to perform the cost analysis, calculate the return on investment (ROI), and energetic efficiency, to substantiate the replacement of the current solution. The new equipment was able to increase the energetic efficiency of the current assembly line while keeping the required injection rates. An efficient and sustainable solution was presented, with a ROI of 1.2 years over the current solution. The proposed design is also applicable to different automated production lines that require this technology. Nowadays, this concept can be extended to all fields of industry that employ injection molding in their processes, enabling to integrate new manufacturing systems, and increasing energetic efficiency while reducing production costs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Felina P. Y. Tan ◽  
Eduardo Beltranena ◽  
Ruurd T. Zijlstra

AbstractStarch from cereal grains, pulse grains, and tubers is a major energy substrate in swine rations constituting up to 55% of the diet. In pigs, starch digestion is initiated by salivary and then pancreatic α-amylase, and has as final step the digestion of disaccharides by the brush-border enzymes in the small intestine that produce monosaccharides (glucose) for absorption. Resistant starch (RS) is the proportion of starch that escapes the enzymatic digestion and absorption in the small intestine. The undigested starch reaches the distal small intestine and hindgut for microbial fermentation, which produces short-chain fatty acids (SCFA) for absorption. SCFA in turn, influence microbial ecology and gut health of pigs. These fermentative metabolites exert their benefits on gut health through promoting growth and proliferation of enterocytes, maintenance of intestinal integrity and thus immunity, and modulation of the microbial community in part by suppressing the growth of pathogenic bacteria while selectively enhancing beneficial microbes. Thus, RS has the potential to confer prebiotic effects and may contribute to the improvement of intestinal health in pigs during the post-weaning period. Despite these benefits to the well-being of pigs, RS has a contradictory effect due to lower energetic efficiency of fermented vs. digested starch absorption products. The varying amount and type of RS interact differently with the digestion process along the gastrointestinal tract affecting its energy efficiency and host physiological responses including feed intake, energy metabolism, and feed efficiency. Results of research indicate that the use of RS as prebiotic may improve gut health and thereby, reduce the incidence of post-weaning diarrhea (PWD) and associated mortality. This review summarizes our current knowledge on the effects of RS on microbial ecology, gut health and growth performance in pigs.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1137
Author(s):  
Alfredo Estrada-Angulo ◽  
Octavio Zapata-Ramírez ◽  
Beatriz I. Castro-Pérez ◽  
Jesús D. Urías-Estrada ◽  
Soila Gaxiola-Camacho ◽  
...  

The aim of this trial was to test the effects of the use of eubiotics (pro- and prebiotics) alone or in combination in the diet of lambs finished under subtropical climate conditions. For this purpose, 40 Pelibuey × Katahdin lambs (29.5 ± 4.8 kg initial live weight) were used in a 93 day growth-performance experiment. Dietary treatments consisted of a cracked corn-based finishing diet supplemented with (1) no eubiotics (control), (2) 3 g of probiotics (live Saccharomyces cerevisiae, SC), (3) 3 g of prebiotics (mannan oligosaccharide plus b-glucans, MOS), and (4) a combination of 1.5 g of SC and 1.5 g of MOS (SC+MOS). Throughout the study, the average temperature humidity index (THI) was 78.60. Compared to controls, supplementation with SC or MOS, alone did not affect average daily gain (ADG), but enhanced feed efficiency by 5.6% and 6.9% (gain-to-feed ratio, G:F) and dietary net energy by 4.6% and 5.9%, respectively. Compared to controls, SC+MOS enhanced ADG (10%), G:F (9.5%), and dietary net energy (7.2%). Lambs fed SC+MOS had also greater ADG, G:F, and dietary net energy compared to lambs fed SC alone. When compared to MOS, the combination enhanced ADG (10.4%, p = 0.04). This effect could be attributed to the increased dry matter intake (7.6%, p = 0.06), as neither G:F nor dietary energy was significantly affected. Compared with controls and SC, supplementation with MOS alone and SC+MOS increased kidney–pelvic–heart fat, while SC supplementation tended (p = 0.08) to reduce 4.1% the relative intestinal mass (as a proportion of empty body weight) when compared to controls. Treatment effects on the other carcass measures were not significant. In the present study, supplemental probiotics and/or prebiotics improved dietary energetic efficiency in lambs finished under subtropical climatic conditions. The combination of probiotics with prebiotics reinforced this positive effect.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032042
Author(s):  
Ma Ascensión Rodríguez-Esteban ◽  
Ma Soledad Camino-Olea ◽  
Alfredo Llorente-Álvarez ◽  
Alejandro Cabeza-Prieto ◽  
Ma Paz Sáez-Pérez

Abstract In the renovation of historic buildings, the facades deserve special attention because, in general, it is where the property’s value and heritage lies. Additionally, they have a fundamental impact in the energetic efficiency of buildings. When you want to achieve an efficient building, the facades must comply with certain construction standards, generally difficult to achieve in renovations, especially in facades built with exposed brick, not altering their external appearance is a sine qua non condition. Against this background, in order to carry out optimal interventions in the thermal behavior of a brick wall, it is essential to have an exhaustive knowledge of the characteristics and values that influence thermal conductivity. To do so, calculations and simulations are carried out using the density and porosity parameters that are published in the different documents and regulations. However, these values are not reliable because they refer to the materials currently manufactured, and therefore, they are not valid when working with centenary materials that have been produced without quality control or precise technical specifications. On the other hand, the values provided by the regulations refer to the material in the dry state. It has not been considered that bricks, and especially those manufactured manually, due to their intrinsic conditions, are capable of absorbing large amounts of water, and therefore, of significantly varying its thermal conductivity. This feature is extrapolated to brickwork facades, where water can rise from the ground and penetrate from the rain. Thus, it is necessary that in the thermal conductivity study its hygrothermal behavior is taken into consideration. Against this background, this article presents the results of the tests carried out on specimens of various bricks from different traditional bricks factories and manufacturing processes and with an approximate age of about 100 years, to show that the old bricks have very different density, porosity and thermal conductivity values from the current ones. In addition, these values vary greatly depending on the moisture they contain, and also, the manufacturing system they had. Likewise, it is clear that the bricks of the facades of historic buildings, even if they are contemporaries, have different characteristics among them, showing different thermal behavior.


Sign in / Sign up

Export Citation Format

Share Document