cellulose membrane
Recently Published Documents


TOTAL DOCUMENTS

463
(FIVE YEARS 132)

H-INDEX

35
(FIVE YEARS 9)

Cellulose ◽  
2022 ◽  
Author(s):  
Zhongguo Wang ◽  
Mengjie Li ◽  
Xiong-Fei Zhang ◽  
Yichen Zhou ◽  
Jianfeng Yao

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 35
Author(s):  
Nebojša Pavlović ◽  
Isidora Anastasija Bogićević ◽  
Dragana Zaklan ◽  
Maja Đanić ◽  
Svetlana Goločorbin-Kon ◽  
...  

Clindamycin hydrochloride is a widely used antibiotic for topical use, but its main disadvantage is poor skin penetration. Therefore, new approaches in the development of clindamycin topical formulations are of great importance. We aimed to investigate the effects of the type of gelling agent (carbomer and sodium carmellose), and the type and concentration of bile acids as penetration enhancers (0.1% and 0.5% of cholic and deoxycholic acid), on clindamycin release rate and permeation in a cellulose membrane in vitro model. Eight clindamycin hydrogel formulations were prepared using a 23 full factorial design, and they were evaluated for physical appearance, pH, drug content, drug release, and permeability parameters. Although formulations with carbomer as the gelling agent exerted optimal sensory properties, carmellose sodium hydrogels had significantly higher release rates and permeation of clindamycin hydrochloride. The bile acid enhancement factors were higher in carbomer gels, and cholic acid exerted more pronounced permeation-enhancing effects. Since the differences in the permeation parameters of hydrogels containing cholic acid in different concentrations were insignificant, its addition in a lower concentration is more favorable. The hydrogel containing carmellose sodium as a gelling agent and 0.1% cholic acid as a penetration enhancer can be considered as the formulation of choice.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261970
Author(s):  
Mohammed Badrul Amin ◽  
Sumita Rani Saha ◽  
Md Rayhanul Islam ◽  
S. M. Arefeen Haider ◽  
Muhammed Iqbal Hossain ◽  
...  

Fluro(quinolones) is an important class of antibiotic used widely in both human and veterinary medicine. Resistance to fluro(quinolones) can be acquired by either chromosomal point mutations or plasmid-mediated quinolone resistance (PMQR). There is a lack of studies on the prevalence of PMQR in organisms from environmental sources in Bangladesh. In this study, we investigated the occurrence of PMQR genes in E. coli from various water sources and analysed associations between multi-drug resistance (MDR) and resistance to extended spectrum β-lactam antibiotics. We analysed 300 E. coli isolates from wastewaters of urban live-bird markets (n = 74) and rural households (n = 80), rural ponds (n = 71) and river water samples (n = 75) during 2017–2018. We isolated E. coli by filtering 100 ml of water samples through a 0.2μm cellulose membrane and incubating on mTEC agar media followed by identification of isolated colonies using biochemical tests. We selected one isolate per sample for detection of PMQR genes by multiplex PCR and tested for antibiotic susceptibility by disc diffusion. Clonal relatedness of PMQR-positive isolates was evaluated by enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). About 66% (n = 199) of E. coli isolates harbored PMQR-genes, predominantly qnrS (82%, n = 164) followed by aac(6’)-lb-cr (9%, n = 17), oqxAB (7%, n = 13), qnrB (6%, n = 11) and qepA (4%, n = 8). Around 68% (n = 135) of PMQR-positive isolates were MDR and 92% (n = 183) were extended spectrum β-lactamase (ESBL)-producing of which the proportion of positive samples was 87% (n = 159) for blaCTX-M-1’ 34% (n = 62) for blaTEM, 9% (n = 16) for blaOXA-1, blaOXA-47 and blaCMY-2, and 2% (n = 4) for blaSHV. Further, 16% (n = 32) of PMQR-positive isolates were resistant to carbapenems of which 20 isolates carried blaNDM-1. Class 1 integron (int1) was found in 36% (n = 72) of PMQR-positive E. coli isolates. PMQR genes were significantly associated with ESBL phenotypes (p≤0.001). The presence of several PMQR genes were positively associated with ESBL and carbapenemase encoding genes such as qnrS with blaCTXM-1 (p<0.001), qnrB with blaTEM (p<0.001) and blaOXA-1 (p = 0.005), oqxAB and aac(6’)-lb-cr with blaSHV and blaOXA-1 (p<0.001), qnrB with blaNDM-1 (p<0.001), aac(6’)-lb-cr with blaOXA-47 (p<0.001) and blaNDM-1 (p = 0.002). Further, int1 was found to correlate with qnrB (p<0.001) and qepA (p = 0.011). ERIC-PCR profiles allowed identification of 84 of 199 isolates with 85% matching profiles which were further grouped into 33 clusters. Only 5 clusters had isolates (n = 11) with identical ERIC-PCR profiles suggesting that PMQR-positive E. coli isolates are genetically heterogeneous. Overall, PMQR-positive MDR E. coli were widely distributed in aquatic environments of Bangladesh indicating poor wastewater treatment and highlighting the risk of transmission to humans and animals.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Xin Huang ◽  
Feng Tian ◽  
Guohong Chen ◽  
Fanan Wang ◽  
Rengui Weng ◽  
...  

It is of great significance to search for efficient, renewable, biodegradable and economical membrane materials. Herein, we developed an organic-inorganic hybrid regenerated cellulose membrane (ZrO2/BCM) with excellent hydrophilic and anti-fouling properties. The membrane was prepared by introducing ZrO2 particles into an N-Methylmorpholine-N-oxide(NMMO)/bamboo cellulose(BC) solution system by the phase inversion method. The physi-chemical structure of the membranes were characterized based on thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (ATR-FTIR), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD). The modified regenerated cellulose membrane has the excellent rejection of bovine serum albumin (BSA) and anti-fouling performance. The membrane flux of ZrO2/BCM is 321.49 (L/m2·h), and the rejection rate of BSA is 91.2%. Moreover, the membrane flux recovery rate after cleaning with deionized water was 90.6%. This new type of separation membrane prepared with green materials holds broad application potential in water purification and wastewater treatment.


2021 ◽  
Vol 10 (15) ◽  
pp. e526101523267
Author(s):  
Letícia Pereira dos Santos Barbosa de Sousa ◽  
Priscila Maria Sarmeiro Correa Marciano Leite ◽  
Angela Aparecida Vieira ◽  
Anderson Carlos Faria ◽  
Lucia Vieira

Bacterial cellulose membrane (BCM) is a biomaterial synthesized by bacteria of the genus Gluconocetobacter hansenii with a higher degree of purity than plant cellulose. The commonly used raw material for manipulating bacterial cellulose is kombucha, a beverage consumed by a vast population around the world that promises health benefits. The beverage is composed of tea species Camellia sinenses and a carbon source, refined sucrose, and a starter culture of bacteria and yeast with 10% fermented tea (starter tea) to activate the fermentative process. The Kombucha’s bacterial cellulose membranes (KBCM) are formed over 7 to 10 days on the surface of the fermented product and have the appearance of a gelatinous membrane, this being the by-product of interest. In this work, the objective was to obtain the membrane composed of cellulose via Kombucha and purify it to obtain crystalline cellulose. The purification was performed with distilled water and 0.5M NaOH sodium hydroxide solution to remove residues from the fermentation, successfully removing sugars and bacteria. At the end of the experiments, a lighter film was obtained with coloration close to white, and comparative analyses were performed to verify the structural chemical composition, crystallinity, and morphology of the samples by techniques FTIR, DRX, and SEM, respectively. Then, once the biomaterial was purified, the range of applications expanded to several products to meet the biomedical area, sustainable packaging, and even the fashion industry.


2021 ◽  
Vol 570 ◽  
pp. 151111
Author(s):  
Dongxue Yao ◽  
Meng You ◽  
Zhiyuan Zhou ◽  
Na Ma ◽  
Shaolu Li ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7266
Author(s):  
Kamil P. Grela ◽  
Dominik M. Marciniak ◽  
Bożena Karolewicz

This article covers the design and evaluation of a novel drug vehicle: a thermosensitive, injectable, high-oil-content (50% w/w) emulgel providing a controlled release of lipophilic pharmaceuticals. Different vegetable (castor, canola, olive, peanut, grapeseed, linseed), mineral (paraffin) and semisynthetic (isopropyl myristate, oleic acid) oils were screened for ibuprofen (IBU) solubility and for their capacity for high-shear emulsification in a 17% (w/w) aqueous solution of poloxamer 407. Chosen emulgels were subject to a rheological evaluation, a syringeability test (TA.XT texture analyser; 2 mL syringe; 18 G, 20 G and 22 G needles) and a drug release study (48 h; cellulose membrane; 0.05 mol/L phosphate buffer at pH 7.4). Castor oil turned out to be an optimal component for IBU incorporation. Blank and drug-loaded castor oil emulgels were susceptible to administration via a syringe and needle, with the absolute injection force not exceeding 3 kg (29.4 N). The drug release test revealed dose-dependent, quasi-linear kinetics, with up to 44 h of controlled, steady, linear release. The results indicate the significant potential of high-oil-content, oil-in-water thermosensitive emulgel formulations as vehicles for the controlled release of lipophilic APIs.


ACS Omega ◽  
2021 ◽  
Author(s):  
Mamoon Ur Rashid ◽  
Zeeshan Tahir ◽  
Sungdo Kim ◽  
Joon I. Jang ◽  
Yong Soo Kim

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1865
Author(s):  
Tatyana V. Volkova ◽  
Olga R. Simonova ◽  
German L. Perlovich

Poor solubility of new antifungal of 1,2,4-triazole class (S-119)—a structural analogue of fluconazole in aqueous media was estimated. The solubility improvement using different excipients: biopolymers (PEGs, PVP), surfactants (Brij S20, pluronic F-127) and cyclodextrins (α-CD, β-CD, 2-HP-β-CD, 6-O-Maltosyl-β-CD) was assessed in buffer solutions pH 2.0 and pH 7.4. Additionally, 2-HP-β-CD and 6-O-Maltosyl-β-CD were proposed as promising solubilizers for S-119. According to the solubilization capacity and micelle/water partition coefficients in buffer pH 7.4 pluronic F-127 was shown to improve S-119 solubility better than Brij S20. Among biopolymers, the greatest increase in solubility was shown in PVP solutions (pH 7.4) at concentrations above 4 w/v%. Complex analysis of the driving forces of solubilization, micellization and complexation processes matched the solubility results and suggested pluronic F-127 and 6-O-Maltosyl-β-CD as the most effective solubilizing agents for S-119. The comparison of S-119 diffusion through the cellulose membrane and lipophilic PermeaPad barrier revealed a considerable effect of the lipid layer on the decrease in the permeability coefficient. According to the PermeaPad, S-119 was classified as a highly permeated substance. The addition of 1.5 w/v% CDs in donor solution moves it to low-medium permeability class.


Sign in / Sign up

Export Citation Format

Share Document