asperity contact
Recently Published Documents


TOTAL DOCUMENTS

439
(FIVE YEARS 96)

H-INDEX

39
(FIVE YEARS 3)

2022 ◽  
pp. 1-32
Author(s):  
Zhaoning Sun ◽  
Xiaohai Li

Abstract A Finite Element Analysis of a rigid sphere contact with a deformable elastic-plastic plat called indentation model is studied. The numerical results are applied on the rough surfaces contact of the GW model. A series of the relationships of the rough surfaces contact parameters are obtained. The contact parameters of the indentation model and the flattening model are compared in detail and the reasons for their differences are analyzed. In the case of single asperity contact, for ω/ωc > 1, the Indentation model reaches the initial plastic yield while the flattening model is ω/ωc = 1. In ω/ωc = 10, the plastic yield reaches the contact surface for the first time, and the corresponding point of ψ = 0.5 the flattening model is relatively earlier in . The contact parameters of rough surface in different plasticity indexes are compared again. On the point of ω/ωc = 6, the contact parameters of the flattening model and the indentation model coincide perfectly. For 0.5 < ψ < 4, the difference between the parameters curves become larger and larger. To the point of ψ = 4, when the distance difference reaches the maximum, it begins to decrease until the two curves are close to coincide again. The dimensionless elastic-plastic contact hardness is introduced. The relation between real contact area and the contact pressure of the indentation model can be acquired quickly. The results show that the geometric shape of deformable contact parts has an important effect on the contact parameters, especially for the extension of plastic deformation region within a specific range of plasticity index.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 139
Author(s):  
Shuqing Chen ◽  
Qi Ding ◽  
Yan Gu ◽  
Xin Quan ◽  
Ying Ma ◽  
...  

The tribological performances of fullerenol and nanodiamonds (NDs) as additives in water-based lubricants for amorphous carbon (a-C) coatings are investigated to avoid disadvantage factors, such as chemical reactions and deformation of particles. The effects of size and additive amount on tribological properties of nanoparticles are studied by rigid nanoparticles within the dot size range. The results show that owing to its small particle size (1–2 nm), fullerenol cannot prevent direct contact of the friction pair at low concentration conditions. Only when the quantity of fullerenol increased to support the asperity contact loads in sufficient concentration did nano-bearings perform well in anti-friction and anti-wear effects. Unlike fullerenol, nanodiamond particles with a diameter of about 5–10 nm show friction-reducing effect based on the nano-bearing effects at ultra-low concentration (0.01 wt.%), whereas particles at higher concentration block the rolling movement, hence increasing the coefficient of friction (COF) and wear. As a result of the effect of difference in size, fullerenol provides a better overall lubrication, but it is hard to reach a friction coefficient as low as NDs even under the optimal conditions.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 268
Author(s):  
Pawel Pawlus ◽  
Rafal Reizer ◽  
Wieslaw Żelasko

Two-process random textures seem to present better functional properties than one-process surfaces. There are many random two-process textures. Plateau-honed cylinder surfaces are the most popular example. Two-process surfaces are also created during the initial periods of life of machined elements. However, knowledge about two-process textures measurement, modeling, and behavior is low. Two-process surfaces are very sensitive to measurement errors. It is very difficult to model them. Special methods of their characterization were created. Their functional significance was studied in a small number of publications. In this paper, measurement, characterization, and modeling of two-process textures were presented. The functional impact of them was analyzed, the effects on contact mechanics and friction and wear were mainly studied. Finally, considerations of future challenges were addressed. The nature of two-process random textures should be taken into account during analyses of properties of machined elements. The plateau part decides about the asperity contact, and the valley portion governs the hydrodynamic lubrication.


2021 ◽  
Vol 11 (24) ◽  
pp. 12081
Author(s):  
Tiewei Sun ◽  
Min Wang ◽  
Xiangsheng Gao ◽  
Yingjie Zhao

In order to eliminate the calculation error of the Hertzian elastohydrodynamic contact stress due to the asymmetry of the contact region of the helix raceway, a non-Hertzian elastohydrodynamic contact stress calculation method based on the minimum excess principle was proposed. Firstly, the normal contact stresses of the screw raceway and the nut raceway were calculated by the Hertzian contact theory and the minimum excess principle, respectively. Subsequently, the Hertzian solution and the non-Hertzian solution of the elastohydrodynamic contact stress could be determined by the Reynolds equation under different helix angles and screw speeds. Finally, the friction torque test of the double-nut ball screws was designed and implemented on a self-designed bed for validation of the proposed method. The comparison showed that the experimental friction torque was the good agreement with the simulated friction torque, which verified the effectiveness and correctness of the non-Hertzian elastohydrodynamic contact stress calculation method. Under the large helix angle, the calculation accuracy of asperity contact stress for the non-Hertzian solution was more accurate than that of the Hertzian solution at the contact region of ball screws. Therefore, the non-Hertzian elastohydrodynamic contact stress considering the asymmetry of the raceway contact region could more accurately analyze the wear depth of the high-speed ball screws.


2021 ◽  
Vol 11 (23) ◽  
pp. 11299
Author(s):  
Liangjie Zheng ◽  
Biao Ma ◽  
Man Chen ◽  
Liang Yu ◽  
Qian Wang

Clutch disengaging dynamic characteristics, including the disengaging duration and the variations of friction pair gaps and friction torque, are crucial to the shifting control of an automatic transmission. In the present paper, the influence of lubrication oil (ATF) temperature on disengaging dynamic characteristics is investigated through a comprehensive numerical model for the clutch disengaging process, which considers the hydrodynamic lubrication, the asperity contact, the heat transfer, the spline resistance, and the impact between the piston and clutch hub. Moreover, the non-uniformity coefficient (NUC) is proposed to characterize the disengaging uniformity of friction pairs. As the ATF temperature increases from 60 °C to 140 °C, the clutch disengaging duration shortens remarkably (shortened by 55.1%); besides, the NUC sees a decreasing trend before a slight increase. When the ATF temperature is 80 °C, the distribution of friction pair gaps is most uniform. During the disengaging process, the increase of ATF temperature not only accelerates the change of the lubrication status between friction pairs but also contributes to the decrease of contact torque and hydrodynamic torque. This research demonstrates for the first time, evidence for clutch disengaging dynamic characteristics with the consideration of ATF temperature.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junru Wang ◽  
Quandai Wang ◽  
Yueyan Li ◽  
Meiling Guo ◽  
Pengyang Li ◽  
...  

Purpose The purpose of this paper is to investigate the effects of surface texture with roughness orientation considered on tribological properties under a mixed lubrication state numerically and experimentally. Design/methodology/approach Based on the average Reynolds equation and asperity contact model, the impacts of surface texture parameters and roughness orientation on lubrication properties have been calculated using finite difference method. Tin–bronze samples with various prescribed surface texture geometric parameters and roughness orientation were fabricated by laser surface texturing technique, and the tribology performance of the textured surface was studied experimentally. Findings The effects of surface geometric parameters and roughness orientation parameters have been discerned. The experimental observations are in good agreement with the numerical prediction, which suggests that the numerical scheme adopted in this work is suitable in capturing the surface texture and roughness effect under mixed lubrication state. Originality/value By meticulously controlling the surface roughness and surface texture geometric characteristics based on the laser surface texturing process, samples with prescribed surface texture parameters and roughness orientation consistent with that in theoretical studies were fabricated and the theoretical model and results were verified experimentally.


2021 ◽  
Vol 5 (4) ◽  
pp. 237
Author(s):  
Junjie Meng ◽  
Xing Du ◽  
Yingming Li ◽  
Peng Chen ◽  
Fuchun Xia ◽  
...  

The wear problems are vital to the planetary roller screw mechanism (PRSM) as they have a great influence on transmission accuracy, working efficiency, and service life. However, the wear characteristics of the PRSM have been rarely investigated in the past. In this paper, a multiscale adhesive wear model is established by incorporating the effective wear coefficient and considering the thread surface roughness. The variation of surface roughness is characterized by the two-dimension Majumdar–Bhushan (MB) function. The multi-asperity contact regimes are used to estimate microcontact mechanics of the rough interface. Moreover, the influences of surface roughness, material properties, and working conditions on the wear depth and precision loss of the PRSM are studied in detail. The results reveal that as the surface roughness increases, the total actual contact area, wear depth, and precision loss rate rise. In addition, the adhesive wear increases with the growth of the axial load, and decreases with the increase in the material hardness and material elastic modulus ratio to a certain extent. The investigation opens up a theoretical methodology to predict the wear volume and precision loss with regard to thread surface roughness, which lays the foundation for the design, manufacturing, and application of the PRSM.


Author(s):  
Anastasios Zavos ◽  
Pantelis G Nikolakopoulos

The paper contains the results of the transient flow of piston ring conjunction of a single-cylinder motorbike engine. Calculations of piston ring forces, asperity contact and gas blow-by are determined in computational fluid dynamics. The stochastic model of Greenwood-Tripp approach is used to predict the load of asperities. The hydrodynamic friction is also calculated by means of computational fluid dynamics including the multi-phase flow through Rayleigh–Plesset equation and a discrete phase model for simulating nanoparticles interaction. The major contribution of this analysis is to specifically investigate the impact of the lubricant with additives and the corresponding transient effects such as hydrodynamic pressure, cavitation and lubricant film within the contact. The results indicate that to investigate realistic mechanisms of multi-phase flow in piston ring-liner contact, the contribution of nanoparticles should be matched with the type of lubricants. In addition, this advanced computational fluid dynamics model showed that nanoparticles motion is important in reciprocating line contacts, leading to lower boundary friction in the order of 8.8% than a simple model where cavitation and nanoparticles are ignored.


2021 ◽  
pp. 1-31
Author(s):  
Jinli Xu ◽  
Jiwei Zhu ◽  
Wei Xia ◽  
Baolei Liu

Abstract A novel micro-asperity contact area model, which considers influences of strain hardening, is proposed to describe contact area between a deformable sphere and a rigid flat for metallic materials. Firstly a generalized formula considering work-hardening behaviors (Pilling-up or Sinking-in) between contact area and interference is proposed for fully plastic regime based on the definition of plastic contact area index. Then a relationship to calculate the critical interference at the inception of fully plastic deformation is derived. In order to incorporate the transition from elastic regime to fully plastic regime, a quadratic rational form formula is proposed based volume conservation model for mixed elastoplastic regime. Therewith a modification is conducted to ensure continuity of contact area model at critical interference for fully plastic regime. Ultimately several representative models and experiment results are exhibited to analyze the availability of present model. It is noted considering work-hardening fully plastic contact area index is not a constant value of 2 for any metallic materials, which is a function of strain hardening exponent. Demonstration testifies that smoothness constraint is not necessary at the critical interferences. The prediction data of present model is consistent with experiment results contrasting that of other models. Current generalized contact area model considering influence of work-hardening results in a better understanding of the contact area between a deformable sphere and a rigid flat and indicates a probability to analyze contact characteristics of two mating rough surfaces accurately.


Sign in / Sign up

Export Citation Format

Share Document