microfluidic devices
Recently Published Documents


TOTAL DOCUMENTS

3235
(FIVE YEARS 769)

H-INDEX

123
(FIVE YEARS 15)

Author(s):  
Vassilios E. Papadopoulos ◽  
Ioanna N. Kefala ◽  
Georgia D. Kaprou ◽  
Angeliki Tserepi ◽  
George Kokkoris

2022 ◽  
Vol 26 (2) ◽  
Author(s):  
Citsabehsan Devendran ◽  
David J. Collins ◽  
Adrian Neild

AbstractSurface acoustic wave (SAW) micromanipulation offers modularity, easy integration into microfluidic devices and a high degree of flexibility. A major challenge for acoustic manipulation, however, is the existence of a lower limit on the minimum particle size that can be manipulated. As particle size reduces, the drag force resulting from acoustic streaming dominates over acoustic radiation forces; reducing this threshold is key to manipulating smaller specimens. To address this, we investigate a novel excitation configuration based on diffractive-acoustic SAW (DASAW) actuation and demonstrate a reduction in the critical minimum particle size which can be manipulated. DASAW exploits the inherent diffractive effects arising from a limited transducer area in a microchannel, requiring only a travelling SAW (TSAW) to generate time-averaged pressure gradients. We show that these acoustic fields focus particles at the channel walls, and further compare this excitation mode with more typical standing SAW (SSAW) actuation. Compared to SSAW, DASAW reduces acoustic streaming effects whilst generating a comparable pressure field. The result of these factors is a critical particle size with DASAW (1 $$\upmu$$ μ m) that is significantly smaller than that for SSAW actuation (1.85 $$\upmu$$ μ m), for polystyrene particles and a given $$\lambda _{\text {SAW}}$$ λ SAW = 200 $$\upmu$$ μ m. We further find that streaming magnitude can be tuned in a DASAW system by changing the channel height, noting optimum channel heights for particle collection as a function of the fluid wavelength at which streaming velocities are minimised in both DASAW and SSAW devices.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Suleiman Aliyu Babale ◽  
Kashif Nisar Paracha ◽  
Sarosh Ahmad ◽  
Sharul Kamal Abdul Rahim ◽  
Zainab Yunusa ◽  
...  

This paper aims to review some of the available tunable devices with emphasis on the techniques employed, fabrications, merits, and demerits of each technique. In the era of fluidic microstrip communication devices, versatility and stability have become key features of microfluidic devices. These fluidic devices allow advanced fabrication techniques such as 3D printing, spraying, or injecting the conductive fluid on the flexible/rigid substrate. Fluidic techniques are used either in the form of loading components, switching, or as the radiating/conducting path of a microwave component such as liquid metals. The major benefits and drawbacks of each technology are also emphasized. In this review, there is a brief discussion of the most widely used microfluidic materials, their novel fabrication/patterning methods.


Author(s):  
Md Nazibul Islam ◽  
Steven M Doria ◽  
Zachary R Gagnon ◽  
Xiaotong Fu

Over the last two decades, microfluidics has received significant attention from both academia and industry, and researchers report thousands of new prototype devices each year for use in a broad range of environmental, pharmaceutical, and biomedical engineering applications. While lab-on-a-chip fabrication costs have continued to decrease, the hardware required for monitoring fluid flows within microfluidic devices themselves remains expensive and often cost prohibitive for researchers interested in starting a microfluidics project. As microfluidic devices become capable of handling complex fluidic systems, low-cost, precise and real time pressure and flow rate measurement capabilities has become increasingly important. While many labs use commercial platforms and sensor, these solutions can often cost thousands of dollars and can be too bulky for on-chip use. Here we present a new inexpensive and easy -to-use piezoresistive pressure and flow sensor that can be easily integrated into existing on-chip microfluidic channels. The sensor consists of PDMS-Carbon black conductive membranes and uses an impedance analyzer to measure impedance change due fluid pressure. The sensor costs several orders of magnitude less than existing commercial platforms and can monitor local fluid pressures and calculate flow rates based on pressure gradient.


Author(s):  
D. Y. Zablotsky ◽  
A. Mezulis ◽  
E. Blums ◽  
M. M. Maiorov

We report focused light-induced activation of intense magnetic microconvection mediated by suspended magnetic nanoparticles in microscale two-dimensional optothermal grids. Fully anisotropic control of microflow and mass transport fluxes is achieved by engaging the magnetic field along one or the other preferred directions. The effect is based on the recently described thermal diffusion–magnetomechanical coupling in synthetic magnetic nanofluids. We expect that the new phenomenon can be applied as an efficient all-optical mixing strategy in integrated microfluidic devices. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


Soft Matter ◽  
2022 ◽  
Author(s):  
Tatiana Porto Santos ◽  
Cesare Mikhail Cejas ◽  
Rosiane Lopes da Cunha

Microfluidic technology enables a judicious control of the process parameters on a small length-scale, which in turn allows speeding up the destabilization of emulsion droplets interface in microfluidic devices. In...


2022 ◽  
pp. 325-360
Author(s):  
Wan Zhou ◽  
Hamed Tavakoli ◽  
Lei Ma ◽  
Cynthia Bautista ◽  
XiuJun Li

Lab on a Chip ◽  
2022 ◽  
Author(s):  
Paria Coliaie ◽  
Rajan R. Bhawnani ◽  
Aditya Prajapati ◽  
Rabia Ali ◽  
Prince Verma ◽  
...  

Illustrated is a continuous-flow microfluidic device with patterned surface to induce faster nucleation of metal–organic frameworks (MOFs) and other slow-growing crystals, where the cyclonic flow allows trapping of crystals to grow them under controlled conditions.


Sign in / Sign up

Export Citation Format

Share Document