plasma cloud
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
И.А. Баранников ◽  
Е.А. Ищенко ◽  
С.М. Фёдоров

Рассматривается плазменная вибраторная антенна, которая предназначена для работы в VHF диапазоне на частоте 140 МГц. Вибраторные плазменные антенны отличаются от обычных вибраторных антенн тем, что металлический проводник заменяется плазмой в газоразрядной трубке. Плазменный вибратор, создаваемый разрядом в трубке, способен включаться и выключаться за время порядка микросекунд. Применение плазменной антенны позволяет обеспечить два режима работы: активный, когда плазма индуцирует проводящую поверхность, и скрытый, когда антенна становится практически невидимой для электромагнитных волн, а плазменное облако отсутствует. Для определения характеристик антенны использовалось электродинамическое моделирование. Полученные результаты показывают, что характеристики плазменной вибраторной антенны близки к характеристикам эквивалентного ей металлического диполя, при этом длина плазменной антенны меньше. Для определения эффективности скрытного режима антенны производилось сравнение характеристик эффективной площади рассеяния плазменной антенны с выключенным плазменным облаком и эквивалентного металлического диполя. Полученные результаты показывают, что плазменная антенна обладает высокой эффективностью излучения, диаграммами направленности, схожими с эквивалентной дипольной антенной, и значительно меньшими значениями эффективной площади рассеяния (ЭПР) в выключенном режиме The article discusses a plasma dipole antenna, which is designed to operate in the VHF band at a frequency of 140 MHz. Plasma dipole antennas differ from conventional dipole antennas in that the metal conductor is replaced by plasma in the discharge tube. The plasma dipole created by the discharge in the tube is capable of turning on and off in times of the order of microseconds. The use of a plasma antenna makes it possible to provide two modes of operation: active, when the plasma induces a conductive surface, and hidden, when the antenna becomes practically invisible to electromagnetic waves, and the plasma cloud is absent. We used electrodynamic modeling to determine the characteristics of the antenna. The results show that the characteristics of the plasma dipole antenna are close to those of the equivalent metal dipole, while the length of the plasma antenna is shorter. To determine the efficiency of the hidden mode of the antenna, we compared the characteristics of radar cross-section of the plasma antenna with the plasma cloud turned off and the equivalent metal dipole. The results obtained show that the plasma antenna has a high radiation efficiency, directional patterns similar to an equivalent dipole antenna, and significantly lower RCS values in the off mode


Author(s):  
A.S. Dikalyuk

The paper presents the results of developing a hybrid three-dimensional model of collisionless interaction in plasma flows. This model considers ions in kinetical terms (simulated as a set of individual particles) and describes electrons in terms of continuum mechanics (simulated as a fluid). We present the system of equations behind the mathematical model and the physical conditions limiting its applicability. The system includes equations describing ion motion in electromagnetic fields, the quasineutrality equation, equations for calculating the total current density, non-radiative Maxwell's equations, and the generalised Ohm's law. We outline a numerical method for solving our hybrid model equations and describe an algorithm for solving the system of equations over time. We focus on the numerical method for solving the induction equation, which takes possible discontinuous solutions into account and preserves the divergence-free condition for the magnetic field. The paper discusses the issues of increasing the spatial approximation accuracy for the numerical scheme used to solve the induction equation. We present numerical simulation results for collisionless expansion of a plasma cloud into a rarefied ionised gas in the presence of an external magnetic field. These results were obtained using our computer code that implements the hybrid model described. The paper demonstrates some numerical properties of the digital simulation developed, specifically, how the order of accuracy for the numerical scheme approximation designed to solve the induction equation affects numerical simulation results


2021 ◽  
Author(s):  
Daniel M Ober ◽  
Trevor S Crawford ◽  
James Vincent Eccles ◽  
Jeffrey Morgan Holmes

2020 ◽  
Vol 501 (1) ◽  
pp. L76-L79
Author(s):  
J I Katz

ABSTRACT Variations of the dispersion measures (DM) and rotation measures (RM) of fast radio bursts (FRBs) 121102 indicate magnetic fields ∼3–17 mG in the dispersing plasma. The electron density may be ${\sim}10^4\,$ cm−3. The observed time scales ∼1 yr constrain the size of the plasma cloud. Increasing DM excludes simple models involving an expanding supernova remnant, and the non-zero RM excludes spherical symmetry. The varying DM and RM may be attributable to the motion of plasma into or out of the line of sight to or changing electron density within slower moving plasma. The extraordinarily large RM of FRB 121102 implies an environment, and possibly also a formation process and source, qualitatively different from those of other FRB. The comparable and comparably varying RM of SGR/PSR J1745−2900 suggests it as a FRB candidate. Appendix A discusses the age of FRB 121102 in the context of a ‘Copernican Principle’.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Xiaoli Zhu ◽  
Yaogai Hu ◽  
Zhengyu Zhao ◽  
Binbin Ni ◽  
Yuannong Zhang

AbstractThe generation and evolution of artificial plasma clouds is a complicated process that is strongly dependent on the background environment and release conditions. In this paper, based on a three-dimensional two-species fluid model, the evolution characteristics of artificial plasma clouds under various release conditions were analyzed numerically. In particular, the effect of ionospheric density gradient and ambient horizontal wind field was taken into account in our simulation. The results show that an asymmetric plasma cloud structure occurs in the vertical direction when a nonuniform ionosphere is assumed. The density, volume, and expansion velocity of the artificial plasma cloud vary with the release altitude, mass, and initial ionization rate. The initial release velocity can change the cloud's movement and overall distribution. With an initial velocity perpendicular to the magnetic field, an O+ density cavity and two bumps exist. When there is an initial velocity parallel to the magnetic field, the generated plasma cloud is bulb-shaped, and only one O+ density cavity and one density bump are created. Compared to the cesium case, barium clouds expand more rapidly. Moreover, Cs+ clouds have a higher density than Ba+ clouds, and the snowplow effect of Cs+ is also stronger.


Author(s):  
Konstantin V. Kozadaev

The paper demonstrates an approach to modeling the thermophysical parameters of vapor in an ablative silver jet propagating at atmospheric pressure. The proposed semi-empirical model is based on the modification of the Anisimov – Luk’yanchuk model taking into account the Zeldovich – Raiser dynamic condensation theory. Such process of dynamic condensation of spherical (or semi-spherical) ablative jets can also be graphically represented as passing in the expanding vapor-plasma cloud of the three spatial concentric spherical waves from the periphery to the center of cloud. There are «saturation» wave (corresponding to the moment of crossing the Poisson adiabate with saturation adiabate at the phase diagram of vapor), wave of nuclear «etching» (the moment of greatest supercooling of vapor in the jet) and the «quenching» wave (stabilization of the condensation degree of the vapor in the jet). Due to the revision of a number of basements of the Anisimov – Luk’yanchuk  model, it was possible to offer an adequate description of thermodynamic processes occurring at normal atmospheric gas pressure.


2019 ◽  
Vol 26 (3) ◽  
pp. 033512
Author(s):  
T. Manegold ◽  
C. Benzing ◽  
S. Faik ◽  
M. Iberler ◽  
A. Michel ◽  
...  
Keyword(s):  

Author(s):  
С.Г. Давыдов ◽  
А.Н. Долгов ◽  
А.В. Корнеев ◽  
Р.Х. Якубов

AbstractThe process of electron instability development and propagation of a cathode electron beam and anomalous ion beam, followed by outburst of current in the initial stage of arc discharge was observed in rarefied plasma cloud of high-voltage vacuum diode. These events are consistent with the model of anomalous ion acceleration in interelectrode plasma at the spark stage of vacuum arc discharge.


JETP Letters ◽  
2018 ◽  
Vol 108 (6) ◽  
pp. 391-395 ◽  
Author(s):  
M. E. Gushchin ◽  
S. V. Korobkov ◽  
V. A. Terekhin ◽  
A. V. Strikovskiy ◽  
V. I. Gundorin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document