cell area
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 78)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xu Chen ◽  
Yi Shao ◽  
Shi-Nan Wu ◽  
Shan-Bi Zhou

Objective. To observe the morphological changes and abnormal structure of corneal endothelial cells in children with uveitis, to analyze the related factors affecting the morphological changes of corneal endothelial cells, and to explore the clinical application of a corneal endothelial microscope in children with uveitis. Methods. The corneal endothelial cells of 70 patients with uveitis were photographed with the Topcon SP-3000 noncontact corneal endothelial microscope, and the corneal endothelial cell density (CD), average cell area (AVE), coefficient of variation of the cell area (CV), and percentage of hexagonal cells (PHC) were measured with the IMAGEnet system. Twenty-eight patients (56 eyes) with monocular uveitis were selected, with the affected eyes (28 eyes) as the experimental group and the contralateral healthy eyes (28 eyes) as the control group. The corneal endothelial cell parameters between the two groups were statistically analyzed. The parameters of corneal endothelial cells in 70 children with uveitis were compared, and the effects of the course of the disease, inflammatory cells in the anterior chamber, and posterior corneal deposition (KP) on the parameters of corneal endothelial cells were analyzed. Results. There are four abnormal forms of the corneal endothelium in children with uveitis: enlarged cell area gap, irregular cell shape, blurred intercellular space, and cell loss. KP showed irregular high reflective white spots in the corneal endothelial microscope images, surrounded by dark areas, and existed in all the eyes with dusty KP found in slit lamp examination and a small number of eyes without obvious KP. Comparing the corneal endothelial cell parameters between the experimental group and the control group, it was found that the corneal endothelial CD and PHC of the former were lower than those of the latter, and the difference was statistically significant ( P < 0.001 and P = 0.018 , respectively). The AVE and CA of the former were higher than those of the latter ( P = 0.013 and P = 0.046 , respectively). The corneal endothelial cell density of the eyes with a course of the disease of more than 1 year was lower than that of the eyes with a course of the disease less than 1 year, the coefficient of variation of the corneal endothelial cell area of the eyes with KP was higher than that of the eyes without KP, and the difference was statistically significant ( P = 0.003 and P = 0.030 , respectively). Conclusion. Corneal endothelial microscopy is one of the important methods for the detection of uveitis with high sensitivity. The change of morphological parameters of corneal endothelial cells is one of the important indexes to assist in the diagnosis of uveitis and can be further promoted in ophthalmological examination.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaru Gao ◽  
Boqing Zhao ◽  
Xiangmei Jiao ◽  
Min Chen ◽  
Baoshan Wang ◽  
...  

Salt-resistant plants have different mechanisms to limit the deleterious effects of high salt in soil; for example, recretohalophytes secrete salt from unique structures called salt glands. Salt glands are the first differentiated epidermal structure of the recretohalophyte sea lavender (Limonium bicolor), followed by stomata and pavement cells. While salt glands and stomata develop prior to leaf expansion, it is not clear whether these steps are connected. Here, we explored the effects of the five phytohormones salicylic acid, brassinolide, methyl jasmonate, gibberellic acid, and abscisic acid on the development of the first expanded leaf of L. bicolor and its potential connection to salt gland, stomata, and pavement cell differentiation. We calculated the total number of salt glands, stomata, and pavement cells, as well as leaf area and pavement cell area, and assessed the correlations between these parameters. We detected strong and positive correlations between salt gland number and pavement cell area, between stomatal number and pavement cell area, and between salt gland number and stomatal number. We observed evidence of coupling between the development of salt glands, stomata, and pavement cells in L. bicolor, which lays the foundation for further investigation of the mechanism behind salt gland development.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 554
Author(s):  
Waqar Shafqat ◽  
Yasser S. A. Mazrou ◽  
Sami-ur-Rehman ◽  
Yasser Nehela ◽  
Sufian Ikram ◽  
...  

Citrus is grown globally throughout the subtropics and semi-arid to humid tropics. Abiotic stresses such as soil water deficit negatively affect plant growth, physiology, biochemistry, and anatomy. Herein, we investigated the effect(s) of three water regimes (control, moderate drought, and severe drought) on the physiological and anatomical structure of 10 different citrus rootstocks with different degrees of tolerance to drought stress. Brazilian sour orange and Gadha dahi performed well by avoiding desiccation and maintaining plant growth, plant water status, and biochemical characters, while Rangpur Poona nucellar (C. limonia) and Sunki × bentake were the most sensitive rootstocks at all stress conditions. At severe water stress, the highest root length (24.33 ± 0.58), shoot length (17.00 ± 1.00), root moisture content (57.67 ± 1.53), shoot moisture content (64.59 ± 1.71), and plant water potential (−1.57 ± 0.03) was observed in tolerant genotype, Brazilian sour orange. Likewise, chlorophyll a (2.70 ± 0.06), chlorophyll b (0.87 ± 0.06) and carotenoids (0.69 ± 0.08) were higher in the same genotype. The lowest H2O2 content (77.00 ± 1.00) and highest proline content (0.51 ± 0.06) were also recorded by Brazilian sour orange. The tolerance mechanism of tolerant genotypes was elucidated by modification in anatomical structures. Stem anatomy at severe drought, 27.5% increase in epidermal cell thickness, 25.4% in vascular bundle length, 30.5% in xylem thickness, 27.7% in the phloem cell area, 8% in the pith cell area, and 43.4% in cortical thickness were also observed in tolerant genotypes. Likewise, leaf anatomy showed an increase of 27.9% in epidermal cell thickness, 11.4% in vascular bundle length, 21% in xylem thickness, and 15% in phloem cell area in tolerant genotypes compared with sensitive ones. These modifications in tolerant genotypes enabled them to maintain steady nutrient transport while reducing the risk of embolisms, increasing water-flow resistance, and constant transport of nutrients across.


2021 ◽  
Author(s):  
Shaohua Zhang ◽  
Chang Huang ◽  
Huamao Miao ◽  
Junyao Wu ◽  
Chao Xing ◽  
...  

Abstract Purpose: To investigate the biosafety and implantation feasibility of newly developed phakic refractive lens (PRL) in rabbit eyes. Methods: The PRLs, including short PRL (S-PRL), large PRL (L-PRL), and large grooved PRL (LG-PRL), were prepared by molding liquid medical silicon. The in vitro cytotoxicity of the above PRLs was evaluated by incubating them with human lens epithelial cells (HLECs) and then measuring cell viability by CCK-8 assay. In vitro cell adhesion of PRLs was assessed by culturing HLECs on PRL film surface and calculating the cell number and average cell area after stained with Calcein-AM and fluorescent. The implantation feasibility was appraised by observing the relative positions of S-PRL, L-PRL or LG-PRL implanted in the posterior chamber of rabbit eyes by optical coherence tomography, and calculating their retention ratio postoperatively. The intraocular pressure (IOP) of S-PRL, L-PRL, LG-PRL and control groups of rabbit eyes was compared to evaluate the biosafety of implantation.Results: The results of in vitro cytotoxicity showed no significant difference of cell viability was observed in the S-PRL, L-PRL or LG-PRL groups compared to the control group throughout the whole experiment. The HLECs cultured on the PRL film surface presented similar cell number, but smaller average cell area (53.8% vs 100%) when compared to the control group, which implied obvious adhesion inhibition on HLECs caused by PRL film. After implantation of S-PRL, L-PRL or LG-PRL into the posterior chamber of rabbit eyes, no obvious inflammation and IOP elevation were observed at each time point in all sample groups compared to the control group, which indicated that PRL samples had good implantation biosafety. Most of the implanted L-PRL and LG-PRL kept in the correct location, while only less of the S-PRL was at the right site. That was, L-PRL and LG-PRL had proper relative position and high retention ratio in the posterior chamber of rabbit eyes. L-PRL and S-PRL samples tended to attach to iris surface, while LG-PRL sample constructed enough space on the iris surface by its grooves surrounding the central optical zone, which was conducive to circulation of aqueous humor.Conclusions: The newly developed LG-PRL sample presented good biosafety in terms of the negligible in vitro cytotoxicity, ocular inflammation and IOP fluctuations. The LG-PRL provided the best implantation feasibility due to the more proper relative position, available space for aqueous humor circulation, and high retention ratio in the posterior chamber of rabbit eyes among the three kinds of PRL samples. Thus, LG-PRL is a promising alternative with appropriate size and surface structure to more effectively correct refractive errors.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hao Zhang ◽  
Wei Li ◽  
Hanzhong Zhang

Oral squamous cell carcinoma (OSCC) is a common type of cancer of the oral cavity. Despite their great impact on mortality, sufficient screening techniques for early diagnosis of OSCC often lack accuracy and thus OSCCs are mostly diagnosed at a late stage. Early detection and accurate recognition of OSCCs would lead to an improved curative result and a reduction in recurrence rates after surgical treatment. The introduction of image recognition technology into the doctor’s diagnosis process can significantly improve cancer diagnosis, reduce individual differences, and effectively assist doctors in making the correct diagnosis of the disease. The objective of this study was to assess the precision and robustness of a deep learning-based method to automatically identify the extent of cancer on digitized oral images. We present a new method that employs different variants of convolutional neural network (CNN) for detecting cancer in oral cells. Our approach involves training the classifier on different images from the imageNet dataset and then independently validating on different cancer cells. The image is segmented using multiscale morphology methods to prepare for cell feature analysis and extraction. The method of morphological edge detection is used to more accurately extract the target, cell area, perimeter, and other multidimensional features followed by classification through CNN. For all five variants of CNN, namely, VGG16, VGG19, InceptionV3, InceptionResNetV2, and Xception, the train and value losses are less than 6%. Experimental results show that the method can be an effective tool for OSCC diagnosis.


2021 ◽  
Vol 1 (4) ◽  
pp. 514
Author(s):  
Nani Widia ◽  
Wahyu Nurul Faroh
Keyword(s):  

Penelitian ini bertujuan untuk mengetahui pengaruh harga dan promosi terhadap keputusan pembelian smartphone oppo pada outlet happy cell area pamulang. Jenis penelitian yaitu asosiatif dengan pendekatan deskriptif dan kuantitatif. Metode yang digunakan untuk menguji dan menganalisis pengaruh secara parsial dan simultan dengan menggunakan analisis regresi, koefisien korelasi, koefisien determinasi, uji t dan uji f. Berdasarkan hasil penelitian harga berpengaruh positif dan signifikan terhadap keputusan pembelian dimana diperoleh nilai (6,138>1,677) dan sig (0,000<0,05) dengan demikian H0 ditolak dan Ha. Dan promosi berpengaruh positif dan signifikan terhadap keputusan pembelian dimana diperoleh nilai (3,707>1.677) dan sig (0,001<0,05) dengan demikian H0 ditolak dan Ha diterima. Dengan demikian dapat disimpulkan dari pengujian hipotesis menggunakan uji statistik dengan nilai (19,736>3,20), dan hal tersebut juga diperkuat dengan signifikansi 0,000<0,05. Dengan demikian H0 ditolak dan Ha diterima.


2021 ◽  
Vol 22 (19) ◽  
pp. 10541
Author(s):  
Óscar Osorio-Conles ◽  
Arturo Vega-Beyhart ◽  
Ainitze Ibarzabal ◽  
José María Balibrea ◽  
Isabel Graupera ◽  
...  

Development and severity of nonalcoholic fatty liver disease (NAFLD) have been linked to obesity and white adipose tissue (WAT) dysfunction plays a key role in this relation. We compared the main features of subcutaneous (SAT) and visceral WAT (VAT) tissue dysfunction in 48 obese women without (Ob) and with NAFLD (Ob-NAFLD) undergoing bariatric surgery and matched for age, BMI and T2D status. Fat cell area, adipocyte size distribution, the degree of histological fibrosis and the mRNA expression of adipokines and genes implicated in inflammation, adipogenesis, angiogenesis, metabolism and extracellular matrix remodeling were measured by RT-qPCR in both fat depots. Ob-NAFLD group showed higher TG and lower HDL circulating levels, increased VAT fat cell area and similar WAT fibrosis in comparison with Ob group. A sPLS-DA was performed in order to identify the set of genes that better characterize the presence of NAFLD. Finally, we build a multinomial logistic model including seven genes that explained 100% of the variance in NAFLD and correctly predicted 100% of cases. Our data support the existence of distinctive NAFLD signatures in WAT from women with severe obesity. A better understanding of these pathways may help in future strategies for the prevention and treatment of NAFLD.


2021 ◽  
Author(s):  
Yao Zhao ◽  
Mei SUN ◽  
Huijun Guo ◽  
Chunhui Feng ◽  
Zhenya Liu ◽  
...  

Abstract Background Against the background of a changing climate, the responses of functional traits of plateau wetland plants to increasing temperatures and CO2 concentrations need to be understood. Hydraulic traits are the key for plants to maintain their ecological functions and affect their growth and survival. However, few studies have comprehensively considered the response strategies of wetland plants' hydraulic traits to environmental changes in the context of water and matter transport, loss, and retention. According to the latest IPCC prediction results, we performed experiments under increased temperature (2℃) and CO2 levels (850 µmol/mol) in an artificial Sealed-top Chamber (STC) to investigate the responses of the hydraulic characteristics of Schoenoplectus tabernaemontani, the dominant species in plateau wetlands in China. Results Compared with the CK group, net photosynthetic rate, transpiration rate, stomatal length, cuticle thickness, vascular bundle length, vascular bundle width, and vascular bundle area of S. tabernaemontani in the ET group were significantly reduced, whereas stomatal density and vein density increased significantly. Compared with the CK group, the hydraulic traits of S. tabernaemontani in the EC group were reduced considerably in stomatal length and cuticle thickness but increased dramatically in stomatal density, and there were no significant differences between other parameter values and the control group. Net photosynthetic rate was significantly positively correlated with stomatal length, cuticle thickness, and vascular bundle length, and stomatal conductance was significantly positively correlated with cuticle thickness. The transpiration rate was significantly positively correlated with cuticle thickness, epidermal cell area, vascular bundle length, vascular bundle width, and vascular bundle area. Regarding the hydraulic traits, there was a significant negative correlation between stomatal density and stomatal length, or cuticle thickness, and a significant positive correlation between the latter two. The epidermal cell area was significantly positively correlated with epidermal thickness, vascular bundle length, vascular bundle width, and vascular bundle area Conclusions Increased temperature and CO2 levels are not conducive to the photosynthetic activity of S. tabernaemontani. Photosynthetic rate, stomatal density and size, vein density, epidermal structure size, and vascular bundle size play an essential role in the adaptation of this species to changes in temperature and CO2 concentration. In the process of adaptation, hydraulic traits are not isolated from each other, and there is a functional association among traits. This study provide a scientific basis for the management and protection of plateau wetlands.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takashi Ono ◽  
Yosai Mori ◽  
Ryohei Nejima ◽  
Takuya Iwasaki ◽  
Takashi Miyai ◽  
...  

AbstractWe aimed to investigate the cell density and morphology of the corneal endothelium in ophthalmologically healthy young Japanese, given the lack of normative data in literature. This observational study included eyes without ophthalmologic diseases, besides refractive errors, examined between 1996 and 2015 at Miyata Eye Hospital. Eyes with a history of ophthalmologic diseases or contact lens usage were excluded. Correlation of corneal endothelial cell density (ECD), coefficient of variation (CV), appearance rate of hexagonal cells (6A), and cell area with age were examined. Multivariate linear regression analysis was performed to determine the predictors of corneal parameters. We included 16842 eyes of 8421 individuals (19.6 ± 8.7 years). ECD was 3109.0 ± 303.7 cells/mm2 and significantly reduced with age (p < 0.001). The ECD reduction rate was 0.42%/year in the total population. On multivariate analysis, age and sex were significantly correlated with ECD, CV, 6A, and cell area (all p < 0.001). ECD, 6A, CV, and cell area are significantly associated with age in healthy young Japanese individuals. Monitoring their corneal endothelium is essential to assess the risk of endothelial damage.


Sign in / Sign up

Export Citation Format

Share Document