solid fraction
Recently Published Documents


TOTAL DOCUMENTS

421
(FIVE YEARS 104)

H-INDEX

34
(FIVE YEARS 4)

2022 ◽  
Vol 327 ◽  
pp. 127-132
Author(s):  
Te Cheng Su ◽  
Catherine O'Sullivan ◽  
Hideyuki Yasuda ◽  
Christopher M. Gourlay

To gain better understanding of rheological transitions from suspension flow to granular deformation and shear cracking, this research conducted shear-deformation on globular semi-solid Al-Cu alloys to study the rheological behavior of semi-solid as a function of solid fraction (38% - 85%) and shear rate (10-4 – 10-1 s-1) under real-time synchrotron radiography observation. By analyzing 17 X-ray imaging datasets, we define three rheological transitions: (i) the critical solid fraction from a suspension to a loosely percolating assembly; (ii) from the net contraction of a loose assembly to the net dilation of a densely packed assembly, and (iii) to shear cracking at high solid fraction and shear rate. Inspired by in-situ observations of semi-solid deformation showing a disordered assembly of percolating crystals in partially-cohesive contact with liquid flow, we reproduced a two-phase sample using the coupled lattice Boltzmann method-discrete element method (LBM-DEM) simulation approach for granular micromechanical modeling. In DEM, each globular Al grain is represented by a discrete element, and the flow of interstitial liquid is solved by LBM. The LBM-DEM simulations show quantitative agreement of semi-solid strain localization with the experiments and are used to explore the components involved in the shear rate dependence of the transitions, and the role of liquid pressure on the initiation of shear cracking.


2022 ◽  
Vol 327 ◽  
pp. 238-243
Author(s):  
Da Quan Li ◽  
Xiao Kang Liang ◽  
Fan Zhang ◽  
Song Chen ◽  
Fan Zhang ◽  
...  

The Rheo-diecast process has been rapidly developed and increasingly used in China in the recent 5 years. The high solid fraction (solid content close to 50%) rheo-diecast components were commercially used in the transportation markets mainly because of lightweight. The mechanical properties of the high solid fraction rheo-diecast components are obviously superior than that of the conventional liquid diecast parts. The defects such as oxide, gas entrapment, shrinkage porosities are well prevented in the high solid fraction rheo-diecast parts. The high solid fraction rheo-diecast parts can be fully T6 heat treated. A comparison between high solid fraction rheo-diecast part and conventional liquid diecast part will be described in detail. The low solid fraction (solid content 5-20%) rheo-diecast components were widely used in the 5G communication markets. The future perspectives of Rheo-diecast process will be described at last. 1. Cost reduction. 2. Production consistency. 3. New Rheo-diecast alloys development. 4. Numerical simulation of Rheological filling.


2022 ◽  
Vol 327 ◽  
pp. 223-230
Author(s):  
Juan Chen ◽  
Xiao Gang Hu ◽  
Wen Ying Qu ◽  
Min Luo ◽  
Zhong Li ◽  
...  

The characteristics of the solid phase, namely the volume fraction, particle size, and morphology, are dominant variables that can determine the viscosity of the semi-solid slurry. However, particle size and morphology were always being ignored and the solid fraction was simply determined using the temperature in the conventional power-law viscosity, resulting in a disagreement in the viscosity values in different researches. To make the power-law viscosity model more accurate for predicting the filling process of semi-solid die casting, it is essential to modify this viscosity model based on particle characteristics. Therefore, there is a fundamental demand to prepare semi-solid slurries with different α-Al phase features at first. This is achieved in this study by two kinds of heat history controlling methods: remelting and solidification, which can get slurries with spherical structure and dendric structure, respectively. The semi-solid 357.0 slurries with 0.11-0.43 solid fraction, 137-182μm particle size, and 0.81-0.90 shape factor were prepared in the remelting process, while dendritic structures (shape factor<0.5) with 0.1 and 0.3 solid fractions were obtained by solidification controlling from the full liquid state. Besides, the effect of parameters on the evolution of the α-Al phase has been discussed. These slurries with different solid features will be further used to quantify the influence of primary phase characteristics on rheological behavior and make the power-law viscosity model more accurate for simulation.


2021 ◽  
Vol 12 (1) ◽  
pp. 237
Author(s):  
Ester Villanueva ◽  
Iban Vicario ◽  
Jon Mikel Sánchez ◽  
Joseba Albizuri ◽  
Jessica Montero

The aim of this work is to determine the Solid Fraction (SF) at the rigidity point (FRP) by applying advanced thermal analysis techniques. The variation of the FRP value is important to explain the solidification behavior and the presence or absence of defects in aluminum alloys. As the final alloy composition plays a key role on obtained properties, the influence of major and minor alloying elements on FRP has been studied. A Taguchi design of experiments and a previously developed calculating method, based on the application of high rank derivatives has been employed to determinate first the rigidity point temperature (RPT) and after the corresponding FRP for AlSi10Mg alloys. A correlation factor of r2 of 0.81 was obtained for FRP calculation formula in function of the alloy composition.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1968
Author(s):  
Abdulsalam Muhrat ◽  
Joaquim Barbosa

Brazing joints of Ti/Ti under ultrasonic vibration (USV) and compression load were investigated using optimized and modified filler alloys of Al-Si-Cu-(Ni)-(Sr) group prepared in the lab. Preliminary trails at semisolid to liquid states were conducted using the ready Al-Si-Cu-(Mg) alloy as a filler, then the brazing cycle was redesigned and enhanced according to the microstructural observations of the produced joints. USV assisted brazing at semisolid state of low solid fraction was able to produce joints with round silicon morphology and granular , while at high solid fraction, USV was only able to affect the silicon and intermetallic particles. Applying a compression load after ultrasonic vibration, at a designed solid fraction, was proved to be a successful technique for improving the quality of the joints by reducing the porosity, enhancing the soundness of the joint, and the diffusion at the interface. Based on alloy composition and the improved brazing cycle, joints of thin intermetallic layer and high shear strength (of 93 MPa average value) were achieved. The microstructures and the mechanical behavior were discussed based on the filler compositions and brazing parameters.


Author(s):  
Andrzej Antczak ◽  
Jan Szadkowski ◽  
Dominika Szadkowska ◽  
Janusz Zawadzki

AbstractIn this paper, the influence of physicochemical pretreatment methods on the chemical composition, enzymatic hydrolysis efficiency and porosity of fast-growing Populus trichocarpa wood was compared. Among the pretreatment methods, the liquid hot water (LHW) and steam explosion (SE) were used, which were performed at three different temperatures (160 °C, 175 °C and 190 °C) and two residence times (15 min and 1 h). The chemical composition, enzymatic hydrolysis and porosity analysis were done for native wood and solid fraction obtained after LHW and SE pretreatments. The porosity analysis was performed by inverse size exclusion chromatography method. Additionally, inhibitors of hydrolysis and fermentation processes in the liquid and solid fractions obtained after pretreatments were examined. Based on the results, it was found that the tested pretreatments caused the greatest changes in the chemical content of hemicelluloses. It was found that after LHW and SE pretreatments up to 99.1% or 94.0%, respectively, of hemicelluloses were removed from the obtained solid fraction. Moreover, the LHW and SE processes greatly enhanced the enzymatic digestibility of fast-growing poplar wood. The highest glucose yield was achieved after 15 min of SE pretreatment at 190 °C and was 676.4 mg/g pretreated biomass, while in the case of xylose the highest value (119.3 mg/g pretreated biomass) was obtained after 15 min of LHW pretreatment at 160 °C. Generally, after SE pretreatment process, more inhibitors were formed, and a greater effect of porous structure development was noticed than after LHW pretreatment. Despite this difference, the average glucose contents and yields after enzymatic hydrolysis of pretreated biomass were generally similar regardless of the pretreatment used.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Murat Çolak ◽  
◽  
Derya Dispinar ◽  

In this work, porosity formation with regard to the change in the metallostatic pressure was investigated. Different geometry was generated to simulate the effect of pressure on critical solid fraction. A380 alloy was sand cast. Additionally, the effect of grain refiner and modifiers was also investigated. Samples were subjected to X-ray radiography and density measurement to quantify the pore size and distribution.


2021 ◽  
Vol 937 (3) ◽  
pp. 032059
Author(s):  
V Gusev ◽  
L Zazykina ◽  
I Sysoeva

Abstract New equipment set for the processing of manure, the main waste of poultry farms, into a range of ancillary products with predetermined properties and parameters is described. This technology decreases the emission of harmful substances into the atmosphere. The method of preparation of manure for the usage as a solid fuel with decreased expenses for drying was developed; this method allows for the significant decrease of nitrogen content in the manure (resulting in the decreased nitrogen emission at burning). The method involves the preliminary mixing of the manure with a natural absorbent (3-5% of the dry matter of manure) sieved through the 0.2 mm screen; separation of the mixture (by centrifuging or pressing) to solid fraction (moisture content 45-56%) and liquid fraction; drying of the solid fraction in a cylinder drier to moisture content 12-22%; the final product can also be pelleted. A part of the product can be burned in a furnace to produce the heat for the drying of the solid fraction; liquid fraction can be further processed in a coagulator to extract protein or can be used as a liquid fertilizer or ingredient of the liquid substrates in the hydroponic greenhouses.


2021 ◽  
Vol 33 (12) ◽  
pp. 123308
Author(s):  
Gang Zeng ◽  
Lin Chen ◽  
Haizhuan Yuan ◽  
Ayumi Yamamoto ◽  
Shigenao Maruyama

Sign in / Sign up

Export Citation Format

Share Document