hybrid lines
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 46)

H-INDEX

15
(FIVE YEARS 3)

Euphytica ◽  
2022 ◽  
Vol 218 (2) ◽  
Author(s):  
Jan Bocianowski ◽  
Roman Prażak

AbstractThis study estimated the genotype × environment interactions for ten yield associated traits in advanced generation hybrids of several cultivars of common wheat (Triticum aestivum L.) with Aegilops kotschyi Boiss. and A. variabilis Eig. using the additive main effects and multiplicative interaction (AMMI) models. Tests were ran over five years at one location in replicated field trials. The AMMI model showed significant genotypic and environmental effects for all analysed traits. A majority of the hybrid lines were less stable in the analysed traits than their parental wheats. The older wheat cultivars, with lower environmental sensitivity, were the most stable. The best total genotype selection index, for all ten traits combined, was observed for the oldest cvs. Gama and Rusałka, and among the hybrid lines, for Ae. kotschyi/Rusałka//Smuga and Ae. kotschyi/Rusałka//Muza. The lines Ae. kotschyi/Rusałka//Smuga, Ae. kotschyi/Rusałka//Muza, Ae. kotschyi/Rusałka//Korweta, Ae. kotschyi/Rusałka//Begra///Smuga, and Ae. kotschyi/Rusałka//Begra///Turnia are recommended for inclusion in breeding programmes due to their greater stability and the good average values for the observed traits.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Irina G. Adonina ◽  
Andrey B. Shcherban ◽  
Maremyana V. Zorina ◽  
Sabina P. Mehdiyeva ◽  
Ekaterina M. Timonova ◽  
...  

Vaviloid spike branching, also called sham ramification, is a typical trait of Triticum vavilovii Jakubz. and is characterized by a lengthening of the spikelet axis. In this article, we present the results of a study of three triticale–wheat hybrid lines with differences in terms of the manifestation of the vaviloid spike branching. Lines were obtained by crossing triticale with hexaploid wheat, T. aestivum var. velutinum. The parental triticale is a hybrid of synthetic wheat (T. durum × Ae. tauschii var. meyrei) with rye, S. cereale ssp. segetale. Line 857 has a karyotype corresponding to hexaploid wheat and has a spike morphology closest to normal, whereas Lines 808/1 and 844/4 are characterized by the greatest manifestation of vaviloid spike branching. In Lines 808/1 and 844/4, we found the substitution 2RL(2DL). The karyotypes of the latter lines differ in that a pair of telocentric chromosomes 2DS is detected in Line 808/1, and these telocentrics are fused into one unpaired chromosome in Line 844/4. Using molecular genetic analysis, we found a deletion of the wheat domestication gene Q located on 5AL in the three studied hybrid lines. The deletion is local since an analysis of the adjacent gene B1 showed the presence of this gene. We assume that the manifestation of vaviloid spike branching in two lines (808/1 and 844/4) is associated with a disturbance in the joint action of genes Q and AP2L2-2D, which is another important gene that determines spike morphology and is located on 2DL.


2021 ◽  
Vol 25 (7) ◽  
pp. 740-745
Author(s):  
E. S. Skolotneva ◽  
V. N. Kelbin ◽  
V. P. Shamanin ◽  
N. I. Boyko ◽  
V. A. Aparina ◽  
...  

Present-day wheat breeding for immunity exploits extensively closely related species from the family Triticeae as gene donors. The 2NS/2AS translocation has been introduced into the genome of the cultivated cereal Triticum aestivum from the wild relative T. ventricosum. It contains the Lr37, Yr17, and Sr38 genes, which support seedling resistance to the pathogens Puccinia triticina Eriks., P. striiformis West. f. sp. tritici, and P. graminis Pers. f. sp. tritici Eriks. & E. Henn, which cause brown, yellow, and stem rust of wheat, respectively. This translocation is present in the varieties Trident, Madsen, and Rendezvous grown worldwide and in the Russian varieties Morozko, Svarog, Graf, Marquis, and Homer bred in southern regions. However, the Sr38 gene has not yet been introduced into commercial varieties in West Siberia; thus, it remains of practical importance for breeding in areas where populations of P. graminis f. sp. tritici are represented by avirulent clones. The main goal of this work was to analyze the frequency of clones (a)virulent to the Sr38 gene in an extended West Siberian collection of stem rust agent isolates. In 2019–2020, 139 single pustule isolates of P. graminis f. sp. tritici were obtained on seedlings of the standard susceptible cultivar Khakasskaya in an environmentally controlled laboratory (Institute of Cytology and Genetics SB RAS) from samples of urediniospores collected on commercial and experimental bread wheat fields in the Novosibirsk, Omsk, Altai, and Krasnoyarsk regions. By inoculating test wheat genotypes carrying Sr38 (VPM1 and Trident), variations in the purity of (a)virulent clones were detected in geographical samples of P. graminis f. sp. tritici. In general, clones avirulent to Sr38 constitute 60 % of the West Siberian fungus population, whereas not a single virulent isolate was detected in the Krasnoyarsk collection. The Russian breeding material was screened for sources of the stem rust resistance gene by using molecular markers specific to the 2NS/2AS translocation. A collection of hybrid lines and varieties of bread spring wheat adapted to West Siberia (Omsk SAU) was analyzed to identify accessions promising for the region. The presence of the gene was postulated by genotyping with specific primers (VENTRIUP-LN2) and phytopathological tests with avirulent clones of the fungus. Dominant Sr38 alleles were identified in Lutescens 12-18, Lutescens 81-17, Lutescens 66-16, Erythrospermum 79/07, 9-31, and 8-26. On the grounds of the composition of the West Siberian P. graminis f. sp. tritici population, the Sr38 gene can be considered a candidate for pyramiding genotypes promising for the Novosibirsk, Altai, and Krasnoyarsk regions. 


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259371
Author(s):  
Matthew J. Powers ◽  
Lucas D. Martz ◽  
Ronald S. Burton ◽  
Geoffrey E. Hill ◽  
Ryan J. Weaver

The marine copepod, Tigriopus californicus, produces the red carotenoid pigment astaxanthin from yellow dietary precursors. This ‘bioconversion’ of yellow carotenoids to red is hypothesized to be linked to individual condition, possibly through shared metabolic pathways with mitochondrial oxidative phosphorylation. Experimental inter-population crosses of lab-reared T. californicus typically produces low-fitness hybrids is due in large part to the disruption of coadapted sets nuclear and mitochondrial genes within the parental populations. These hybrid incompatibilities can increase variability in life history traits and energy production among hybrid lines. Here, we tested if production of astaxanthin was compromised in hybrid copepods and if it was linked to mitochondrial metabolism and offspring development. We observed no clear mitonuclear dysfunction in hybrids fed a limited, carotenoid-deficient diet of nutritional yeast. However, when yellow carotenoids were restored to their diet, hybrid lines produced less astaxanthin than parental lines. We observed that lines fed a yeast diet produced less ATP and had slower offspring development compared to lines fed a more complete diet of algae, suggesting the yeast-only diet may have obscured effects of mitonuclear dysfunction. Astaxanthin production was not significantly associated with development among lines fed a yeast diet but was negatively related to development in early generation hybrids fed an algal diet. In lines fed yeast, astaxanthin was negatively related to ATP synthesis, but in lines fed algae, the relationship was reversed. Although the effects of the yeast diet may have obscured evidence of hybrid dysfunction, these results suggest that astaxanthin bioconversion may still be related to mitochondrial performance and reproductive success.


2021 ◽  
Author(s):  
Анжела Рудакова ◽  
◽  
Сергей Рудаков ◽  
Юрий Чесноков ◽  
◽  
...  

Using electrophoresis, in 114 recombinant hybrid lines of the mapping population of spring bread wheat and in 2 parental forms, 7 esterase isoenzymes were found: A1-A7 (Mr 93-138 kDa). According to their esterase composition, all samples were subdivided into 17 zymotypes. Isoforms A4 and A6 are pre-sent in all zymotypes, i.e. are monomorphic. The other 5 isozymes provide a high level of polymorphism in the population. The majority of genotypes belong to the zymotype Gr. 1 (27%), which includes 6 isoforms. Among them there are isoforms A1 and A7, characteristic only for each of the parent forms, which indicates the codominant inheritance of these isoenzymes.


2021 ◽  
Vol 9 (4) ◽  
pp. 417-431
Author(s):  
Cecilia A. Shinda ◽  
◽  
Josiah N. Gitari ◽  
Paul N. Nthakanio ◽  
Steven Runo ◽  
...  

Gadam cultivar of sorghum has been characterized by low yields compared to the international yield levels of sorghum. In this research, Gadam was crossed with Serena, Seredo, and Kari/Mtama-1 in an attempt to increase yield through heterosis. The objective of this study was to determine the level of compatibility and heterosis in crosses between Gadam and the three sorghum lines in a reciprocal crossing. Gadam was crossed with the three lines and their reciprocals to make six treatments that were subjected to compatibility and heterosis tests. The F1 hybrid lines and their parental controls were sown in a randomized complete block design in three replicates. Compatibility and heterosis data variances were analyzed using R statistical software. The cross between Gadam x Serena, Serena x Gadam and the parent Gadam exhibited moderate mean plant height ranging from 99.5 cm to 120.5 cm. The cross Gadam x Serena recorded a desirable negative mid-parent heterosis of -19.89 and -16.16 for plant height and days to maturity respectively. All F1 hybrids recorded positive mid-parent heterosis for the panicle length, the number of reproductive tillers, a thousand seed weight, and the number of tillers per plant. The crosses Gadam x Seredo, Seredo x Gadam, Gadam x Serena and Kari/Mtama-1 x Gadam recorded significantly lower grain filling percentages compared to their parents. In conclusion, the F1 hybrids differed significantly from their reciprocal crosses especially in days of heading, flowering, and maturity indicating a significant maternal influence in these traits. Also, the mid-parent and better parent heterosis had a nonsignificant difference in quantitative traits assessed except for the plant height and grain filling percentage.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11702
Author(s):  
Shikai Guan ◽  
Qian Song ◽  
Jinye Zhou ◽  
Haixia Yan ◽  
Yuxiang Li ◽  
...  

Background The wishbone flower or Torenia fournieri Lind., an annual from tropical Indochina and southern China, is a popular ornamental plant, and many interspecific (T. fournieri × T. concolor) hybrid lines have been bred for the international market. The cultivated lines show a pattern of genetic similarity that correlates with floral color which informs on future breeding strategies. This study aimed to perform genetic analysis and population structure of cultivated hybrid lines comparing with closely related T. concolor wild populations. Methods We applied the retrotransposon based iPBS marker system for genotyping of a total of 136 accessions from 17 lines/populations of Torenia. These included 15 cultivated lines of three series: Duchess (A, B, C); Kauai (D, E, F, G, H, I, J); Little Kiss (K, L, M, N, P) and two wild T. concolor populations (Q and R). PCR products from each individual were applied to estimate the genetic diversity and differentiation between lines/populations. Results Genotyping results showed a pattern of genetic variation differentiating the 17 lines/populations characterized by their specific floral colors. The final PCoA analysis, phylogenetic tree construction, and Bayesian population structural bar plot all showed a clear subdivision of lines/populations analysed. The 15 cultivated hybrid lines and the wild population Q that collected from a small area showed the lowest genetic variability while the other wild population R which sampled from a larger area had the highest genetic variability. Discussion The extremely low genetic variability of 15 cultivated lines indicated that individual line has similar reduction in diversity/heterozygosity from a bottleneck event, and each retained a similar (but different from each other) content of the wild genetic diversity. The genetic variance for the two wild T. concolor populations could be due to our varied sampling methods. The two wild populations (Q, R) and the cultivated hybrid lines (I, K, M, N, P) are genetically more closely related, but strong positive correlations presented in cultivated lines A, C, E, M, and N. These results could be used to guide future Torenia breeding. Conclusions The genetic variation and population structure found in our study showed that cultivated hybrid lines had similar reduction in diversity/heterozygosity from a bottleneck event and each line retained a similar (but different from each other) content of the wild genetic diversity, especially when strong phenotypic selection of floral color overlaps. Generally, environmental factors could induce transposon activation and generate genetic variability which enabled the acceleration of the evolutionary process of wild Torenia species. Our study revealed that wild Torenia populations sampled from broad geographic region represent stronger species strength with outstanding genetic diversity, but selective breeding targeting a specific floral color decreased such genetic variability.


Author(s):  
E. Ya. Yukhacheva ◽  
E. G. Akulenko ◽  
G. L. Yagovenko

The article presents the results of estimation of adaptivity and productivity of 25 selected black currants hybrids under Bryansk region conditions. Tests have been done in 2019-2020 according to the common used programs and methods for breeding and variety testing of fruit and berries crops. The aim of the research was to evaluate the total plant state, flowering level, number of berries per a cluster, berries’ weight and productivity as well as to select the most adaptive and productive lines for their use in the future breeding work. Genotypes 8-20-227, 8-20-229 and 8-20-243 with excellent general condition and degree of flowering have been identified from the Yadrenaya x Izyumnaya family. In the formation of the overall crop, a significant place is occupied by such a component of productivity as the number of berries in the cluster. The level of manifestation of this trait is largely determined by the genetic basis of plants and significantly depends on the conditions of overwintering, the level of agricultural technology and weather conditions before and after flowering, as well as during the laying of generative buds. There are not lines with long clusters. There are some hybrids with moderate clusters (7-8 berries): 8-20-219 and 8-20-227 (Yadrenaya.Izyumnaya), 8-20-166, 8-20-185 and 8-20-177 (7-1-157.Litvinovskaya). The other lines had short clusters (5-6 berries) and very short ones (3-4 berries). The average berries’ weight was from 1.0 g (8-20-167) to 2.2 g (8-20-13). The seedlings 8-20-13 (7-2-229.Uslada) and 8-20-175 (7-1-157.Litvinovskaya) had the highest berries’ weight of 3.3 g and 3.1 g. Productivity of selected hybrid lines varied from 0.2 kg/bush (8-20-214 and 8-20-15) to 2.4 kg/bush (8-20-227). As a result of the studies carried out, genotypes 8-20-227, 8-20-229 and 8-20-223 from the Yadrenaya x Izyumnaya family, resistant to abiotic and biotic environmental factors with a productivity of 2.4, 2.2 and 2.2 kg / bush, respectively, were identified. These genotypes have been multiplied and will be further used in breeding as sources of high productivity.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 597
Author(s):  
Hongli Tian ◽  
Yang Yang ◽  
Rui Wang ◽  
Yaming Fan ◽  
Hongmei Yi ◽  
...  

To strengthen the management of maize varieties and the protection of intellectual property rights to new varieties, we constructed a comprehensive single nucleotide polymorphism (SNP)-DNA standard fingerprint database of 20,075 materials covering nationally and provincially approved maize hybrid lines, hybridized combinations, and inbred lines. The database was based on 200 core SNPs selected from 60 K SNPs distributed in intragenic regions, including 106 (53.0%) located in exons. Average minor allele frequencies (MAF) of the 200 SNPs in 6755 maize hybrids, 7837 hybridized combinations, and 3478 inbred lines were 0.385, 0.350, and 0.378, respectively, with corresponding average polymorphism information content (PIC) values of 0.354, 0.335, and 0.351. Heterozygous genotype frequencies of maize hybrids, hybridized combinations, and inbred lines averaged 0.48, 0.47, and 0.012, respectively. The number of different loci in the three different maize groups ranged from one up to 164, 160, and 140, respectively. The percentage of different SNPs within 5% (the number of difference SNPs is less than 10) accounted for 0.013%, 0.011%, and 0.030% among pairwise comparisons of samples within hybrid lines, hybridized combinations and inbred lines, respectively. Genetic distances between varieties based on the 200 core SNPs were highly correlated with those obtained using 60 K SNPs, with a correlation coefficient of 0.82 and 0.87 in in inbred and hybrid lines, respectively. The maize SNP-DNA fingerprint database established in this study can play an important role in variety authentication, purity determination and the protection of variety rights, thereby providing reliable, comprehensive data support for use in the seed industry.


Sign in / Sign up

Export Citation Format

Share Document