parallel processors
Recently Published Documents


TOTAL DOCUMENTS

549
(FIVE YEARS 21)

H-INDEX

35
(FIVE YEARS 1)

2021 ◽  
Vol 50 (1) ◽  
pp. 5-12
Author(s):  
Hani Alquhayz ◽  
Mahdi Jemmali

This paper focuses on the maximization of the minimum completion time on identical parallel processors. The objective of this maximization is to ensure fair distribution. Let a set of jobs to be assigned to several identical parallel processors. This problem is shown as NP-hard. The research work of this paper is based essentially on the comparison of the proposed heuristics with others cited in the literature review. Our heuristics are developed using essentially the randomization method and the iterative utilization of the knapsack problem to solve the studied problem. Heuristics are assessed by several instances represented in the experimental results. The results show that the knapsack based heuristic gives almost a similar performance than heuristic in a literature review but in better running time.  


2021 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Kwek Benny Kurniawan ◽  
YB Dwi Setianto

GPU or Graphic Processing Unit can be used on many platforms in general GPUs are used for rendering graphics but now GPUs are general purpose parallel processors with support for easily accessible programming interfaces and industry standard languages such as C, Python and Fortran. In this study, the authors will compare CPU and GPU for completing some matrix calculation. To compare between CPU and GPU, the authors have done some testing to observe the use of Processing Unit, memory and computing time to complete matrix calculations by changing matrix sizes and dimensions. The results of tests that have been done shows asynchronous GPU is faster than sequential. Furthermore, thread for GPU needs to be adjusted to achieve efficiency in GPU load.


Author(s):  
Sweety Nain ◽  
Prachi Chaudhary

Introduction: Accurate branch prediction technique has become compulsory in the superscalar and deep pipeline processors. The conditional instructions can break the continuous flow of execution in the pipeline stages, thereby decreasing processor performance. Discussion: This paper highlights the concept of branch prediction, some issues and challenges, and techniques for improving processor performance. Further, this paper also presents the role of branch prediction in different processors and their features. Conclusion: The concept of the branch prediction used in parallel processors to enhance the execution speed of the conditional branch instructions and improve the processor's performance is highlighted in this paper. Further, this paper highlights the branch predictor techniques with their features and presents the challenges, issues, and future techniques related to the branch prediction.


Author(s):  
Jonathan Dupuy

We introduce the concurrent binary tree (CBT), a novel concurrent representation to build and update arbitrary binary trees in parallel. Fundamentally, our representation consists of a binary heap, i.e., a 1D array, that explicitly stores the sum-reduction tree of a bitfield. In this bitfield, each one-valued bit represents a leaf node of the binary tree encoded by the CBT, which we locate algorithmically using a binary-search over the sum-reduction. We show that this construction allows to dispatch down to one thread per leaf node and that, in turn, these threads can safely split and/or remove nodes concurrently via simple bitwise operations over the bitfield. The practical benefit of CBTs lies in their ability to accelerate binary-tree-based algorithms with parallel processors. To support this claim, we leverage our representation to accelerate a longest-edge-bisection-based algorithm that computes and renders adaptive geometry for large-scale terrains entirely on the GPU. For this specific algorithm, the CBT accelerates processing speed linearly with the number of processors.


Sign in / Sign up

Export Citation Format

Share Document