curing process
Recently Published Documents


TOTAL DOCUMENTS

1149
(FIVE YEARS 330)

H-INDEX

33
(FIVE YEARS 7)

Author(s):  
Nagmeldin Elamin ◽  
Ahemed.M. Bashir

One of the standard conditions for solidifying composite propellants consist of hydroxyl terminated poly-butadiene as a binder and ammonium perchlorate as oxidizer, is the curing process for certain time in a certain temperature. On this paper, the motives and reasons for the decreasing of this curing time were studied and discussed. The study and discussion include the productivity, cost, delivery, manpower, and maintenance points of view. By experiments and questionnaire work, it was seen that, all the previous points of view were affected positively. Generally, the productivity of the propellant was increased by 100%, the cost of curing process was decreased by 25% of the previous cost, the man power needed for the process of waiting and recording the readings was decreased by 50%, customer delivery process was fasted by 50% of the previous delivery time, and finally the maintenance processes due to equipment depreciation were improved by 50% from the previous. From the whole point of view, it was seen that, the decreasing of the curing time is very useful for the production of the propellant. Finally, it is observed that the decreasing of the curing time to the half time brought the same properties of the standard curing time, and then it is concluded that the deceasing of the curing time can be applied safely and usefully in the casting production line.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7731
Author(s):  
Paulina Bednarczyk ◽  
Małgorzata Nowak ◽  
Karolina Mozelewska ◽  
Zbigniew Czech

Due to long-term problems related to environmental protection, economic aspects, and waste management in the chemical industry, it is justified to develop renewable polymers as an alternative to synthetic polymers. Two kinds of acrylic bio-renewable components were used for the modification of acrylated epoxidized soybean oil (AESO). The bio-based compositions used as photocurable binders to obtain the photocurable coatings with satisfactory properties and high bio content were then prepared. The kinetic of curing reaction of the oligomers and monomers towards radical photopolymerization and the properties of the cured coatings were fully investigated; the results are discussed in relation with the compounds’ structures. Important information about how to design and obtain renewable photocurable coatings with satisfactory properties was provided in this study. In this study, AESO resin was modified with renewable oligomer or (math)acrylate monomer to increase the reactivity and reduce the viscosity of the photoreactive system in order to obtain renewable and viable alternatives to petroleum-based polymeric materials with perfect film-forming properties. It turned out that both photopolymerization rate and hardness of cured coatings were increased significantly with the addition of modifiers; the use of a thiol modifier and change of the photoinitiator concentration allowed to improve the adhesion, hardness, and control of the photo-curing process.


2021 ◽  
Vol 31 (1) ◽  
pp. 015039
Author(s):  
Jianjian Zhu ◽  
Jinshan Wen ◽  
Chunyang Chen ◽  
Xiao Liu ◽  
Zifeng Lan ◽  
...  

Abstract As one of cost-effective maintenance methods, bonded composite patch repair has been receiving more and more attention in the engineering community since past decades. However, realizing real-time monitoring for curing process of bonded repair patch is difficult for most current techniques. In our work, a method based on electromechanical impedance and system parameters evaluation for structural health monitoring issues was developed, which could implement the online monitoring throughout whole curing process. Compared with the dynamic thermomechanical analysis results, the experiment data matches well. It demonstrates that the proposed approach can effectively monitor the curing process of composite repair patch at a constant temperature of 120 °C. Hence, the presented approach in this paper is expected to be a novel, robust, and real-time monitoring method for structural maintenance with the composite patch.


Author(s):  
yinghong yu ◽  
Xiao Liu ◽  
jun li ◽  
Yishou Wang ◽  
xinlin qing

Abstract The vacuum-assisted resin infusion (VARI) technique provides considerable advantages in manufacturing large-scale composite structures. An accurate and consecutive structural health monitoring system is urgently required to determine the initial quality and assess the structural integrity of a composite structure. In this paper, a real-time active smart diagnostic system (SDS) based on piezoelectric sensor network is proposed to monitor the whole life-cycle of composite structures. Experiments were conducted on carbon fiber reinforced plastic (CFRP) specimens with different thicknesses to investigate the monitoring capability of piezoelectric lead-zirconate-titanate (PZT) sensors used in the SDS approach. The PZT sensor networks inserted inside the composite structures during the VARI process are used to monitor not only the curing parameters, but also the health status of composite structures when they are in service after curing. To monitor the curing process only, the sensor network can also be installed on the bottom of the mould. Experimental results demonstrate that both three-dimensional resin flow and degree of cure (DOC) in the VARI process can be effectively monitored by the PZT sensor network. Meanwhile, the embedded PZT sensor network has the potential to identify the different stages in the curing process. It is obvious that the piezoelectric sensor network will provide important technical support for composite materials with the structure and function integrated.


2021 ◽  
Vol 2 (4) ◽  
pp. 942-955
Author(s):  
Carmela Riccio ◽  
Marco Civera ◽  
Oliver Grimaldo Ruiz ◽  
Perla Pedullà ◽  
Mariana Rodriguez Reinoso ◽  
...  

Different mechanical properties characterise the materials of 3D printed components, depending on the specific additive manufacturing (AM) process, its parameters, and the post-treatment adopted. Specifically, stereolithography (SLA) uses a photopolymerisation technique that creates solid components through selective solidification. In this study, 72 specimens were 3D printed using 12 commercial-grade methacrylate resins and tested under uniaxial tensile loads. The resin specimens were evaluated before and after curing. The recommended cure temperature and time were followed for all materials. The stress-strain curves measured during the testing campaign were evaluated in terms of maximum tensile strength, Young’s modulus, ductility, resilience, and toughness. The results reveal that the curing process increases the material stiffness and resistance to tensile loads. However, it was found that the curing process generally reduces the plasticity of the resins, causing a more or less marked brittle behaviour. This represents a potential limitation to the use of SLA 3D printing for structural elements which require some plasticity to avoid dangerous sudden failures.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3900
Author(s):  
Nils Vasic ◽  
Julian Steinmetz ◽  
Marion Görke ◽  
Michael Sinapius ◽  
Christian Hühne ◽  
...  

The article reports on the influence of annealing PVDF in an autoclave process on the PVDF phase composition. DSC, FTIR and XRD measurements serve to observe the phase changes in an already stretched, polarised and β-phase rich film. Annealing was conducted between 90 and 185 ∘C to cover a broad range of curing processes in an autoclave. The β-phase is found to be stable up to near the melting range at 170 ∘C. At 175 ∘C, the non-piezoelectric α-phase dominates and the piezoelectric γ- and γ′-phases appear. The γ-phase grows at elevated temperatures and replaces the β-phase. This observation stresses the importance of developing new methods to reactivate the polarisation after annealing, in particular for the integration of PVDF as a sensor in laminated structures, such as CFRP.


Sign in / Sign up

Export Citation Format

Share Document