parent metal
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 890 ◽  
pp. 95-104
Author(s):  
Victor Verbiţchi ◽  
Horia Florin Daşcău ◽  
Lia Nicoleta Boțilă ◽  
Radu Cojocaru

Friction stir processing (FSP), with tilted parent metal is a new process, which consists in the use of an inclined base plate with an angle α = 1 - 3 º related to the table of the FSP processing machine, by mounting a calibrated part under one end of the base plate. Two clamping plates are fixed with screws on the base plate, and a sheet (parent metal, PM) or a workpiece is placed between the base plate and the clamping plates. The processing tool has the same tilt angle with respect to the sheet to be processed. Said parts are components of the jig for the process described. The processing tool performs a movement with the speed v(x), correlated with a simultaneous movement with the speed v(z) = v(x) tg α. The correlation is achieved by means of a program developed for the processing machine. Due to the tilt, during the FSP process, the leading edge of the rotating tool shoulder progressively enters the PM, continuously, at the point where the shoulder penetration depth in the PM is minimal. On the multifunctional friction processing machine, MMPF type, the processing by the described process of an aluminium alloy sheet, with the sizes 300 mm x 200 mm x 4 mm was performed. A hardened C45 steel tool was used, having the following technical characteristics: shoulder diameter 14 mm, smooth frusto-conical pin with a large diameter of 2.5 mm, a small diameter of 2.0 mm, and a height of 1.5 mm. The parameters had the following values: tilt angle α = 2° 6'; pin penetration depth h = 1.60 - 1.85 mm; tool speed n = 1500 - 2000 rpm; speed v(x) = 1 - 2 mm / s; speed (software correlated) v(z) = 0.03672181 * (1 - 2) mm / s; the temperature of the sheet behind the tool t = 240 - 420 °C. The appearance of the processed sheet is appropriate. No imperfections are observed. The results are appropriate. The tilted PM brings the following advantages of the process: the mechanical stress to produce burrs and / or chips on the surface of the PM decreases; the way the FSP process is carried out is improved, by reducing gap moving and vibrations; the appearance and mechanical characteristics of the processed areas are improved; the quality level of the executed products rises; wear of processing tools is reduced; energy efficiency increases; the electricity consumption of the machine decreases; productivity increases.


2021 ◽  
Author(s):  
Petrônio Zumpano ◽  
Juliana L. Cardoso ◽  
Zehbour Panossian ◽  
Ilson P. Baptista ◽  
Helio Miranda ◽  
...  

Abstract Preferential weld corrosion (PWC) is due to the formation of galvanic cells between the weld metal (WM), the parent metal (PM) and the heat affected zone (HAZ). This work has studied PWC susceptibility in longitudinal and circumferential welded joints of submarine systems and the applicability of corrosion inhibitors to mitigate the corrosive process. DNVGL SAW 450, DNVGL SMLS 450 and low alloy forged, with different nickel, copper and silicon content were tested. Several factors influence PWC susceptibility in welded structures and those selected to be studied were weld joint geometry, PM fabrication process, welding process and welding consumable chemical content. For each welding processes, welded coupons were made with similar heat input. Pipe SAW seam welds of two different plate suppliers and different nickel and copper content were tested. Tests in circumferential weld joints were predicted for 79 different combination of chemical composition: PM chemical composition and manufacturing process; welding processes; chemical composition of welding consumables. Selected welding processes are the most used by offshore industry (SAW, mechanized GMAW and manual GTAW). The root configuration of respective welding procedure specifications produce a desired variation in width geometry. The corrosion tests started with the longitudinal joints and will be further reproduced for circumferential joints. A test procedure has been developed for corrosion evaluation through immersion test, galvanic current measurement (GCM) through zero resistance ammeter (ZRA) and localized electrochemical test through SVET. Two test solutions were considered, simulating condensed and dragged water droplets in order to verify the susceptibility or occurrence of the preferential welding corrosion in the welded joints. The results for longitudinal joints indicated a greater susceptibility to PWC in dragged water than in condensed water droplets and a greater susceptibility of joints with greater anodic potential due to a higher nickel and copper content in the parent metal. A correlation between the corrosion rates obtained in both medium and the moisture contents of gas pipelines will be performed to determine the need for the addition of corrosion inhibitors and to establish the minimum required dosage. A future work will involve circumferential joints and the evaluation of the optimal dosage of corrosion inhibitors.


Author(s):  
Mahdi Kazemi ◽  
Amir Ghiasvand

AbstractIn the present study, the effect of cone angle of tool pin on the mechanical properties and microhardness properties of aluminum alloy AA6061-T6 specimens is investigated for three processes of SFSW, symmetric DFSW, and asymmetric DFSW. In each of the mentioned welding processes, tools with 5 different conical angles of 0, 5, 10, 15, and 20° are used. In these three welding processes, the mechanical properties of the final welded joint with conical tools have been enhanced noticeably compared to the tool with simple cylindrical pins (0° angle). Based on the obtained results, it was found that the joints obtained from asymmetric DFSW, symmetric DFSW, and SFSW had the best mechanical properties, respectively. The optimum cone angles for tool pin in SFSW, symmetric DFSW, and asymmetric DFSW processes were equal to 15, 10, and 10°, respectively. In addition, it was concluded that the welded specimen through the asymmetric DFSW with the cone angle of 10° attained the closest mechanical properties to the base (parent) metal. The parameters of YS, UTS, and E% in this sample were 78.3%, 84.8%, and 86.4% of the base sample, respectively.


Vestnik MGSU ◽  
2021 ◽  
pp. 75-90
Author(s):  
Ekaterina A. Gridasova ◽  
Maria A. Sereda ◽  
Shokhrukh S. Zakirov ugli

Introduction. Pipeline systems are exposed to several conditions that lead to a drastic reduction in their durability, primarily due to variable low-frequency and high-frequency loads arising in a process pipeline due to the operation of compressor units. Hence, fatigue failure occurs, leading to the pipeline failure. As early as at the pipeline installation stage, sections of process pipelines have weld connections, and thermal welding cycles have an adverse effect on the properties of materials exposed to fatigue loading. The study of weld connections in steel pipelines exposed to high-frequency vibrations and effects of weld seam defects on durability characteristics are the focus of this research. Materials and methods. Low-carbon pipeline steel St20 was selected for the study. The radiographic inspection method, optical metallography, microhardness of structural phases, and the method of high-frequency fatigue tests were used. Results. The results and principal conclusions about the effect of welding defects on durability characteristics of welded samples, made of pipeline steel and exposed to high-frequency fatigue tests, are presented; structural changes in weld connections are analyzed using optical metallography and microhardness methods. Defects of weld seams and their dimensions were identified by means of radiographic inspection. A comparative analysis of durability limits, demonstrated by the parent metal of the model material that has defective weld connections, and the same limits of defect-free samples is provided. The main causes of failure of weld joints, exposed to high-frequency vibrations, are identified. Conclusions. Having summarized the research findings, we can argue that high-frequency vibrations have a negative impact on the parent metal of a process pipeline and its weld joints. The weld seam is the point of failure; defects trigger destruction, and their presence has a higher impact on fatigue characteristics than their dimensions or types. Characteristics of durability in case of exposure to high frequency loading applied to a weld joint in the gigacycle range are 67 percent below those of the parent metal.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2233
Author(s):  
Tatyana Olshanskaya ◽  
Vladimir Belenkiy ◽  
Elena Fedoseeva ◽  
Elena Koleva ◽  
Dmitriy Trushnikov

The application of electron beam sweep makes it possible to carry out multifocal and multi-beam welding, as well as combine the welding process with local heating or subsequent heat treatment, which is important when preparing products from thermally-hardened materials. This paper presents a method of electron beam welding (EBW) with dynamic beam positioning and its experimental-calculation results regarding the formation of structures and properties of heat-resistant steel welded joints (grade of steel 20Cr3MoWV). The application of electron beam oscillations in welding makes it possible to change the shape and dimensions of welding pool. It also affects the crystallization and formation of a primary structure. It has been established that EBW with dynamic beam positioning increases the weld metal residence time and the thermal effect zone above the critical A3 point, increases cooling time and considerably reduces instantaneous cooling rates as compared to welding without beam sweep. Also, the difference between cooling rates in the depth of a welded joint considerably reduces the degree of structural non-uniformity. A bainitic–martensitic structure is formed in the weld metal and the thermal effect zone throughout the whole depth of fusion. As a result of this structure, the level of mechanical properties of a welded joint produced from EBW with dynamic electron beam positioning approaches that of parent metal to a greater extent than in the case of welding by a static beam. As a consequence, welding of heat-resistant steels reduces the degree of non-uniformity of mechanical properties in the depth of welded joints, as well as decreases the level of hardening of a welded joint in relation to parent metal.


2020 ◽  
Vol 1157 ◽  
pp. 38-46
Author(s):  
Victor Verbiţchi ◽  
Radu Cojocaru ◽  
Lia Nicoleta Boțilă ◽  
Cristian Ciucă ◽  
Ion Aurel Perianu

Experiments have been performed for the butt welding of 160 mm x 90 mm x 2 mm sheets of EN AW 5754 aluminium alloy, where the friction stir welding (FSW) has been used.Referring to the parent metal, the chemical composition and the form of wrought products of the aluminium alloy EN AW 5754 is presented, according to the standard EN 573-1:2005, respectively EN 573-3:2013. The mechanical properties of EN AW-5754 (Al Mg3) sheets are presented, according to EN 485-2:2016. The experiments have been conducted on the own equipment for friction stir welding, type FSW-4kW-10kN, to execute 8 (eight) FSW test pieces, according to EN ISO 25239-4. A quenched FSW tool, own-made of C 45 grade steel, EN 10083, has been used. The parameters of the FSW tests are shown. As main parameters, the rotational speed of the FSW tool was in the range n = 800 – 1200 rev/min, respectively the travel speed was in the range v = 50 – 200 mm/min. The run of the joining experiments is described and the joining test pieces are presented in figures. The ultimate tensile strength of the parent metal (σmin,pm) is based on the specified minimum tensile strength of the ”O” condition of the parent material, respectively this value is also required for the weld, that is σmin,w = 190 MPa. The specimens T1.0, T1.1, T2.1, T2.2, T3.1, T3.2, T4.1, T4.2, T5.1, T5.2 și T6.1 are adequate and accepted by this tensile test. The specimens T1.2, T6.2, T7.1, T72. and T8.1 can be accepted, if higher properties are achieved with a full postweld treatment. Another possibility is a lower extent of the minimum tensile strength of the weld that shall be in accordance with another design specification, for example σmin,w = 145 MPa. By the correlation of the FSW parameters with the results of the tensile test, the ranges for the main parameters with adequate values of the ultimate tensile strength are established: n = 800 – 1000 rev/min and v = 50 – 100 mm/min. By the conclusions, the main aspects of the execution of the FSW test pieces, as well as the results of the tensile tests are selected. The involved industrial areas of the applications are: electro-technique, electronics, manufacturing, shipbuilding and automotive industries. The FSW process is ecological, because it neither uses, nor produces hazardous substances. The references consist of 12 titles.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3556
Author(s):  
Xiangjun Xu ◽  
Junpin Lin ◽  
Jian Guo ◽  
Yongfeng Liang

The friction weldability of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y alloy has been investigated by optimizing process parameters and analyzing the microstructures and tensile properties of the joints. The as-cast alloy with a nearly lamellar (NL) microstructure and the as-forged alloys with a duplex (DP) microstructure have been successfully welded. All the joints have a severe deformation zone (SDZ) and a transition zone (TZ) between the parent metal (PM) and SDZ. SDZ, showing a biconcave lens geometry, has a maximum thickness of hundreds of micrometers at the periphery. TZ is hundreds of micrometers thick. All SDZs have a fine-grained DP microstructure with a grain size of a few micrometers. For the joint of the as-cast alloy, the TZ consists of deformed lamellar colonies as the major constituent and partially recrystallized grains as the minor constituent. For the joint of the as-forged alloy, the TZ is similar to both the PM and SDZ, showing a DP microstructure. The grain size, volume fraction of γ grains, and the remnant lamellar colonies all increase with the distance from the SDZ. All joints presented perfect metallurgical bonding. The strengths of the joints are higher than those of the corresponding PMs. This indicates that the studied alloy has good friction weldability.


Sign in / Sign up

Export Citation Format

Share Document