karst aquifers
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 111)

H-INDEX

33
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Fatemeh Geravand ◽  
Seiyed Mossa Hosseini ◽  
Mehran Maghsoudi ◽  
Mojtaba Yamani

Abstract Karst groundwater resources in the Zagros Mountains are vital for supplying of different demands in the region which need to sustainable management and protection. Quantitative and qualitative characterization of karst aquifers in this region were understudied due to lack of site-specific logging-data and speleological investigations. In this study, a state-of-the-art of the statistical methods developed to characterize karst aquifer based on analyses of the spring recession hydrograph and spring water quality are presented. These methods including Manging’s method for classification of karst aquifers, relationships of precipitation and discharge data, groundwater quality index (GQI), hydrochemical diagrams (Piper, Durov and Gibbs), and Saturation index (SI), Chloro-Alkaline indices (CAI). 42 major karst springs mainly located in folded part of Zagros region (western Iran) are selected for application of the reviewed methods. Results indicated that the saturated zone exerts almost main control over the discharge of 76% of the studied springs. The base-flow contributes as between 80.0% to 100% of total water storage in the study aquifers. 78.5% of the studied aquifers have a high karstification degree. An insignificant lag-time is observed between the precipitation on the karst basin and spring discharge. The hydrochemical diagrams show that the waters are dominated by HCO3 and Ca and the majority of the waters are alkaline, with originate from silicate minerals weathering. Such repeatable methods adopted in this study can provide crucial information of the karst aquifers, especially those suffer scarcity of aquifer hydrodynamic data.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 179
Author(s):  
Francesco Fiorillo ◽  
Libera Esposito ◽  
Guido Leone ◽  
Mauro Pagnozzi

The Poiseuille and Darcy laws describe the velocity of groundwater flow under laminar conditions. These laws were deducted empirically in conduit and porous systems, respectively, and are widely used to model the groundwater flow. The analytical relationship between these hydraulic laws has been found by draining a tank-reservoir. Based on equations found, the discharge in a conduit under the Poiseuille law can be transformed in the same amount flowing inside a darcian system, and vice versa. This transformation occurs, for example, in karst aquifers, from the matrix to karst conduits during discharge phases, and from conduits to matrix during recharge phases.


2022 ◽  
Vol 14 (2) ◽  
pp. 732
Author(s):  
Drago Dvanajščak ◽  
Jože Ratej ◽  
Vojkan Jovičić

Water resources in karsts are scarce due to the high cavernosity in the otherwise low-permeability limestone rock mass. The highly variable porosity and transmissivity of karst aquifers are caused by a network of channels, caverns, and caves that typically act as water-bearing, connected vessels. Tunneling in a karst environment can severely deplete an aquifer and undermine the sustainability of water resources over the long term. A research study was carried out to elaborate and develop measures for the sustainable preservation of the water resources in a Slovenian karst, in which two approximately 7 km-long tunnels will be driven as part of the construction of the new Divača–Koper railway line. Hydrogeological site investigations were carried out with an aim to evaluate the transmissivity and spatial spreading of the karst aquifer along the route of the tunnels, including the observation of the long-term variation of the groundwater levels and trace experiments. The main findings, which are presented in this paper, were used to develop a methodology for the selection of adequate measures for tunnel construction with an aim of ensuring the sustainability of water resources in karst aquifers. The construction measures comprise limiting the inflows using injection grouting, obscuring the groundwater intake by undrained sections of the tunnel, and constructing bypasses around the tunnel to preserve the current groundwater flow regime. The presented methodology of dynamically accommodating the preventive measures to the actual hydrogeological conditions onsite is generally applicable for common cases in which the state of the karst aquifer could not be pre-determined with a sufficient accuracy of tens of meters to a meter. The spatially and temporally continuous hydrogeological investigations and decision-making charts to reduce the tunnelling’s impact on the karst aquifer are explained in detail in this paper.


2021 ◽  
Vol 83 (4) ◽  
pp. 151-162
Author(s):  
Rachel Bosch ◽  
Dylan Ward ◽  
Aaron Bird ◽  
Dan Sturmer ◽  
Rick Olson

This work presents an analysis of a debris flow deposit below Earth’s surface in the Mammoth Cave System in Kentucky, USA, and is the first study to characterize an in-cave debris flow to this level of detail. The deposit, named Mt. Ararat by cavers, has a maximum thickness of 7 m, a head-to-tail length of 75 m, and a total volume of about 3400 m3, as determined by terrestrial LiDAR and electrical resistivity surveys. The deposit is chaotic, angular, matrix-supported, and roughly inversely graded, with grain sizes, quantified through various grain-size distribution measuring techniques, ranging from clay through boulders larger than 1 m. The clasts are predominantly Mississippian Big Clifty sandstone, which is allochthonous in this part of the cave. The angularity of the blocks in the deposit indicate that they had not experienced significant erosion; and therefore, are determined to have been transported only a relatively short distance over a short time. The deposit profile is compound in appearance with two heads. We thus interpret this as a debris flow deposit resulting from two distinct flow events, and present a chronology of events leading to the present-day Mt. Ararat in Mammoth Cave. The findings of this work will inform further studies of karst-related erosional events, sediment transport, and deposition at different scales in karst aquifers, as well as the ways in which surface and subsurface processes interact to contribute to karst landscape evolution.


2021 ◽  
Vol 936 (1) ◽  
pp. 012027
Author(s):  
P V Hardyani ◽  
A S Bahri ◽  
T Hariyanto ◽  
W W Parnadi ◽  
Y Rosandi ◽  
...  

Abstract Karst aquifers can be a source of water supply, especially for the community in Donorojo District, which is one of the areas with the worst drought crisis in Pacitan Regency and requires a sustainable solution to the problem of water needs. Therefore, the study and management of karst formations are very important because of their abundance and potential in forming subsurface aquifer karst aquifers. The recharge rate is one of the basic parameters in the management of the consumption and maintenance of this resource. In addition, the distribution of aquifer locations, aquifer characteristics, and the quality of groundwater forming the aquifer need to be known. This study aims to assess aquifers in the Karst area of Donorojo, Pacitan based on recharge rate and spatial distribution. The APLIS method can estimate surface recharge rates and present the results as a map of the spatial distribution of aquifer recharge rates by utilizing a Geographical Information System (GIS). The results of the analysis using the APLIS method, the groundwater recharge rate in the Donorojo Pacitan karst area is divided into 4 classes, namely very low, low, moderate, and high. Almost the entire Donorojo karst area has a high groundwater recharge rate, this means that the area needs to be used as a groundwater protection zone and it is important to carry out good groundwater management, especially to overcome the problem of drought.


2021 ◽  
Author(s):  
Jacques Bodin ◽  
Gilles Porel ◽  
Benoît Nauleau ◽  
Denis Paquet

Abstract. Assessment of the karst network geometry based on field data is an important challenge in the accurate modeling of karst aquifers. In this study, we propose an integrated approach for the identification of effective three-dimensional (3D) discrete karst conduit networks conditioned on tracer tests and geophysical data. The procedure is threefold: i) tracer breakthrough curves (BTCs) are processed via a regularized inversion procedure to determine the minimum number of distinct tracer flow paths between injection and monitoring points, ii) available surface-based geophysical data and borehole-logging measurements are aggregated into a 3D proxy model of aquifer hydraulic properties, and iii) single or multiple tracer flow paths are identified through the application of an alternative shortest path (SP) algorithm to the 3D proxy model. The capability of the proposed approach to adequately capture the geometrical structure of actual karst conduit systems mainly depends on the sensitivity of geophysical signals to karst features, whereas the relative completeness of the identified conduit network depends on the number and spatial configuration of tracer tests. The applicability of the proposed approach is illustrated through a case study at the Hydrogeological Experimental Site (HES) in Poitiers, France.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2759
Author(s):  
Fei Guo ◽  
Jing Yang ◽  
Hu Li ◽  
Gang Li ◽  
Zhuo Zhang

Groundwater is an important water resource, and groundwater level (GWL) forecasting is a useful tool for supporting the sustainable management of water resources. Existing studies have shown that GWLs can be accurately predicted by combining an artificial neural network model with meteorological and hydrological factors. However, GWL data are typically geographic spatiotemporal series data, and current studies have considered only the spatial distance factor when predicting GWLs. In karst aquifers, the GWL is affected by the developmental degree of the karst, topographic factors, structural features, and other factors; considering only the spatial distance is not enough, and the real spatial connectivity characteristics need to be considered. Thus, in this paper, we proposed a new method for forecasting GWLs in karst aquifers while considering connectivity characteristics using a neural network prediction model. The connectivity of a karst aquifer was analyzed by a multidimensional feature clustering method based on the distance index and hydrogeological characteristics recorded at observation wells, and a convolutional long short-term memory (ConvLSTM) conjunction model was constructed. The proposed approach was validated through GWL simulations and predictions in karst aquifers in Jinan, China, and four experiments were conducted for comparison. The experimental results show that the proposed method provided the most consistent results with the measured observation well data among the analyzed methods. These findings demonstrate that the proposed method, which considers connectivity characteristics in karst aquifers, has a higher simulation accuracy than other methods. This method is therefore effective and provides a new idea for the real-time prediction of the GWLs of karst aquifers.


Sign in / Sign up

Export Citation Format

Share Document