pore geometry
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 93)

H-INDEX

43
(FIVE YEARS 5)

Author(s):  
Ryan L. Payton ◽  
Yizhuo Sun ◽  
Domenico Chiarella ◽  
Andrew Kingdon

Abstract Mineral trapping (MT)is the most secure method of sequestering carbon for geologically significant periods of time. The processes behind MT fundamentally occur at the pore scale, therefore understanding which factors control MT at this scale is crucial. We present a finite elements advection–diffusion–reaction numerical model which uses true pore geometry model domains generated from $$\upmu$$ μ CT imaging. Using this model, we investigate the impact of pore geometry features such as branching, tortuosity and throat radii on the distribution and occurrence of carbonate precipitation in different pore networks over 2000 year simulated periods. We find evidence that a greater tortuosity, greater degree of branching of a pore network and narrower pore throats are detrimental to MT and contribute to the risk of clogging and reduction of connected porosity. We suggest that a tortuosity of less than 2 is critical in promoting greater precipitation per unit volume and should be considered alongside porosity and permeability when assessing reservoirs for geological carbon storage (GCS). We also show that the dominant influence on precipitated mass is the Damköhler number, or reaction rate, rather than the availability of reactive minerals, suggesting that this should be the focus when engineering effective subsurface carbon storage reservoirs for long term security. Article Highlights The rate of reaction has a stronger influence on mineral precipitation than the amount of available reactant. In a fully connected pore network preferential flow pathways still form which results in uneven precipitate distribution. A pore network tortuosity of <2 is recommended to facilitate greater carbon mineralisation.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ana Beatriz Santa Cruz Garcia ◽  
Kevin P. Schnur ◽  
Asrar B. Malik ◽  
Gary C. H. Mo

AbstractGasdermin D forms large, ~21 nm diameter pores in the plasma membrane to drive the cell death program pyroptosis. These pores are thought to be permanently open, and the resultant osmotic imbalance is thought to be highly damaging. Yet some cells mitigate and survive pore formation, suggesting an undiscovered layer of regulation over the function of these pores. However, no methods exist to directly reveal these mechanistic details. Here, we combine optogenetic tools, live cell fluorescence biosensing, and electrophysiology to demonstrate that gasdermin pores display phosphoinositide-dependent dynamics. We quantify repeated and fast opening-closing of these pores on the tens of seconds timescale, visualize the dynamic pore geometry, and identify the signaling that controls dynamic pore activity. The identification of this circuit allows pharmacological tuning of pyroptosis and control of inflammatory cytokine release by living cells.


2022 ◽  
Vol 933 ◽  
Author(s):  
Fanli Liu ◽  
Moran Wang

We investigate the impact of wettability distribution, pore size distribution and pore geometry on the statistical behaviour of trapping in pore-throat networks during capillary displacement. Through theoretical analyses and numerical simulations, we propose and prove that the trapping patterns, defined as the percentage and distribution of trapped elements, are determined by four dimensionless control parameters. The range of all possible trapping patterns and how the patterns are dependent on the four parameters are obtained. The results help us to understand the impact of wettability and structure on trapping behaviour in disordered media.


2021 ◽  
Author(s):  
Yanshuang Kang ◽  
Haijun Wang ◽  
Zongli Sun

Abstract Based on free-energy average method, an area-weighted effective potential is derived for rectangular corrugated nano-pore. With the obtained potential, classical density functional theory is employed to investigate the structural and thermodynamic properties of confined Lennard-Jones fluid in rectangular corrugated slit pores. Firstly, influence of pore geometry on the adsorptive potential is calculated and analyzed. Further, thermodynamic properties, including excess adsorption, solvation force, surface free energy and thermodynamic response functions are systematically investigated. It is found that pore geometry can largely modulate the structure of the confined fluids, which in turn influences other thermodynamic properties. In addition, the results show that different geometric elements have different influences on the confined fluids. The work provides an effective route to investigate the effect of roughness on confined fluids. It is expected to shed light on further understanding about interfacial phenomena near rough walls, and then provide useful clues for design and characterization of novel materials.


2021 ◽  
Author(s):  
Rafael Ignacio Celma ◽  
Nepal Singh ◽  
Kamal Ouldamer ◽  
Pascal Debec

Abstract The objective of this project is to simulate elastic logs (sonic P, sonic S and density) through a Petroelastic Model (PEM) for a complex lithology reservoir in the Middle East, that later will be used as input for a new 4D seismic feasibility study. A log conditioning (despike, depth shift, hydrocarbon correction and normalization) and comprehensive petrophysical analysis was first performed, to obtain lithology volumetric, porosity and saturation, that later were used as input for the PEM. Some wells with recorded P and S sonic log were used to conduct different cross plots of elastic properties (e.g. Vp/Vs vs. Acoustic Impedance) in order to understand how lithology, porosity and saturation affect the elastic parameters of the reservoir. After understanding and assessing the elastic behavior with the reservoir properties, three approaches to construct a PEM were tested on this reservoir. The first approach used to construct PEM applying Hashin Shtrikman (H-S) mixt, considering the solid part as a mixture of dolomite and limestone and pore space filled with a mix of oil and water. This model is limited because assumes a homogenous geometry of the pores. To address the pore geometry a Kuster Toksoz (K-T) approach was subsequently tested but the challenge was that there was no clear organization of the aspect ratio (either by lithofacies or petrophysical groups) so the original logs were used to control of the aspect ratio trough a fit function. The third approach was to use a function that models the incompressibility model of the frame (Kdry) with porosity. The result of H-S was a good agreement in the low porosity areas but in the porous intervals, it is observed that the velocities were quite high due the effect of the pore geometry that was not properly assessed by H-S. Despite reasonable reconstructions, K-T was limited by the impossibility to apply it to the wells without sonic P and S (uncalibrated aspect ratio) or a fortiori to a 3D grid. For the Kdry vs. Porosity function the result was very successful since the function is not dependent on the pore geometry, and addresses the ratio issue between solid and pore space. Then with the help of the Gassman Equation, the final Incompressibility Mix Module (Kmix) was calculated and a reconstructed sonic P and S were available for all the wells. The PEM was coded in order to deploy over a 3D property model hence a volumetric elastic model was available to assess the feasibility for new seismic acquisition.


Author(s):  
Zheng Sun ◽  
Bingxiang Huang ◽  
Yaohui Li ◽  
Haoran Lin ◽  
Shuzhe Shi ◽  
...  

AbstractAcademic investigations digging into the methane flow mechanisms at the nanoscale, closely related to development of shale gas reservoirs, had attracted tremendous interest in the past decade. At the same time, a good understanding of the complex essence remains challenging, while the broad theoretical scope, as well as application value, possesses great attraction. In this work, with the help of molecular dynamics methods nested in LAMMPS software, a fundamental framework is established to mimic the nanoconfined fluid flow through realistic organic shale matrix. Denoting evident discrepancy with existed contributions, shale matrix in this work is composed of specific number of kerogen molecules, rather than simple carbon-based nanotube. Recently, promotion efforts have been implemented in the academic community with the use of kerogen molecules, however, gas flow simulations are still lacking, and the pore shape in the current papers is always hypothesized as slit pores. The pore-geometry assumption seriously conflicts with the general observation phenomenon according to the advanced laboratory experiments, such as SEM image, AFM technology, that the organic pores tend to have circular pore geometry. In order to fill the knowledge gap, the circular nanopore with desirable pore size surrounded by kerogen molecules is constructed at first. The organic nanopore with various thermal maturity can be obtained by altering the kerogen molecular type, expecting to achieve more physically and theoretically similar to the realistic shale matrix. After that, methane flow simulation is performed by utilization of non-equilibrium molecular dynamics, the methane density as well as velocity distribution under different displacement pressures are depicted. Furthermore, detailed discussion with respect to the simulation results is provided. Results show that (a) displacement pressure acts as a dominant role affecting methane flow velocity and, however, fails to affect methane density distribution, a behavior mainly controlled by molecular–wall interactions; (b) the velocity distribution feature appears to be in line with the parabolic law under high atmosphere pressure, which can be attributed to small Knudsen number; (c) the simulation time will be prolonged with larger displacement pressure imposed on nanoconfined methane. Accordingly, this work can provide profound basis for accurate evaluation of nanoconfined gas flow behavior through shale matrix.


2021 ◽  
Author(s):  
◽  
James Eldridge

<p>Accurate characterisation of micro- and nanoparticles is of key importance in a variety of scientific fields from colloidal chemistry to medicine. Tuneable resistive pulse sensing (TRPS) has been shown to be effective in determining the size and concentration of nanoparticles in solution. Detection is achieved using the Coulter principle, in which each particle passing through a pore in an insulating membrane generates a resistive pulse in the ionic current passing through the pore. The distinctive feature of TRPS relative to other RPS systems is that the membrane material is thermoplastic polyurethane, which can be actuated on macroscopic scales in order to tune the pore geometry.  In this thesis we attempt to extend existing TRPS techniques to enable the characterisation of nanoparticle charge and shape. For the prediction of resistive pulses produced in a conical pore we characterise the electrolyte solutions, pore geometry and pore zeta-potential and use known volume calibration particles. The first major investigation used TRPS to quantitatively measure the zeta-potential of carboxylate polystyrene particles in solution. We find that zeta-potential measurements made using pulse full width half maximum data are more reproducible than those from pulse rate data. We show that particle zeta-potentials produced using TRPS are consistent with literature and those measured using dynamic light scattering techniques.  The next major task was investigating the relationship between pulse shape and particle shape. TRPS was used to compare PEGylated gold nanorods with spherical carboxylate polystyrene particles. We determine common levels of variation across the metrics of pulse magnitude, duration and pulse asymmetry. The rise and fall gradients of resistive pulses may enable differentiation of spherical and non-spherical particles.  Finally, using the metrics and techniques developed during charge and shape investigations, TRPS was applied to Rattus rattus red blood cells, Shewanella marintestina bacteria and bacterially-produced polyhydroxyalkanoate particles. We find that TRPS is capable of producing accurate size distributions of all these particle sets, even though they represent nonspherical or highly disperse particle sets. TRPS produces particle volume measurements that are consistent with either literature values or electron microscopy measurements of the dominant species of these particle sets. We also find some evidence that TRPS is able to differentiate between spherical and non-spherical particles using pulse rise and fall gradients in Shewanella and Rattus rattus red blood cells. We expect TRPS to continue to find application in quantitative measurements across a variety of particles and applications in the future.</p>


2021 ◽  
Author(s):  
◽  
James Eldridge

<p>Accurate characterisation of micro- and nanoparticles is of key importance in a variety of scientific fields from colloidal chemistry to medicine. Tuneable resistive pulse sensing (TRPS) has been shown to be effective in determining the size and concentration of nanoparticles in solution. Detection is achieved using the Coulter principle, in which each particle passing through a pore in an insulating membrane generates a resistive pulse in the ionic current passing through the pore. The distinctive feature of TRPS relative to other RPS systems is that the membrane material is thermoplastic polyurethane, which can be actuated on macroscopic scales in order to tune the pore geometry.  In this thesis we attempt to extend existing TRPS techniques to enable the characterisation of nanoparticle charge and shape. For the prediction of resistive pulses produced in a conical pore we characterise the electrolyte solutions, pore geometry and pore zeta-potential and use known volume calibration particles. The first major investigation used TRPS to quantitatively measure the zeta-potential of carboxylate polystyrene particles in solution. We find that zeta-potential measurements made using pulse full width half maximum data are more reproducible than those from pulse rate data. We show that particle zeta-potentials produced using TRPS are consistent with literature and those measured using dynamic light scattering techniques.  The next major task was investigating the relationship between pulse shape and particle shape. TRPS was used to compare PEGylated gold nanorods with spherical carboxylate polystyrene particles. We determine common levels of variation across the metrics of pulse magnitude, duration and pulse asymmetry. The rise and fall gradients of resistive pulses may enable differentiation of spherical and non-spherical particles.  Finally, using the metrics and techniques developed during charge and shape investigations, TRPS was applied to Rattus rattus red blood cells, Shewanella marintestina bacteria and bacterially-produced polyhydroxyalkanoate particles. We find that TRPS is capable of producing accurate size distributions of all these particle sets, even though they represent nonspherical or highly disperse particle sets. TRPS produces particle volume measurements that are consistent with either literature values or electron microscopy measurements of the dominant species of these particle sets. We also find some evidence that TRPS is able to differentiate between spherical and non-spherical particles using pulse rise and fall gradients in Shewanella and Rattus rattus red blood cells. We expect TRPS to continue to find application in quantitative measurements across a variety of particles and applications in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document