dynamic optimization problems
Recently Published Documents


TOTAL DOCUMENTS

283
(FIVE YEARS 36)

H-INDEX

27
(FIVE YEARS 4)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 148
Author(s):  
Yucheng Lyu ◽  
Yuanbin Mo ◽  
Yanyue Lu ◽  
Rui Liu

Dynamic optimization is an important research topic in chemical process control. A dynamic optimization method with good performance can reduce energy consumption and prompt production efficiency. However, the method of solving the problem is complicated in the establishment of the model, and the process of solving the optimal value has a certain degree of difficulty. Based on this, we proposed a non-fixed points discrete method of an enhanced beetle antennae optimization algorithm (EBSO) to solve this kind of problem. Firstly, we converted individual beetles into groups of beetles to search for the best and increase the diversity of the population. Secondly, we introduced a balanced direction strategy, which explored extreme values in new directions before the beetles updated their positions. Finally, a spiral flight mechanism was introduced to change the situation of the beetles flying straight toward the tentacles to prevent the traditional algorithm from easily falling into a certain local range and not being able to jump out. We applied the enhanced algorithm to four classic chemical problems. Meanwhile, we changed the equal time division method or unequal time division method commonly used to solve chemical dynamic optimization problems, and proposed a new interval distribution method—the non-fixed points discrete method, which can more accurately represent the optimal control trajectory. The comparison and analysis of the simulation test results with other algorithms for solving chemical dynamic optimization problems show that the EBSO algorithm has good performance to a certain extent, which further proves the effectiveness of the EBSO algorithm and has a better optimization ability.


Algorithms ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 9
Author(s):  
Felipe Martins Müller ◽  
Iaê Santos Bonilha

Hyper-heuristics comprise a set of approaches that are motivated (at least in part) by the objective of intelligently combining heuristic methods to solve hard optimization problems. Ant colony optimization (ACO) algorithms have been proven to deal with Dynamic Optimization Problems (DOPs) properly. Despite the good results obtained by the integration of local search operators with ACO, little has been done to tackle DOPs. In this research, one of the most reliable ACO schemes, the MAX-MIN Ant System (MMAS), has been integrated with advanced and effective local search operators, resulting in an innovative hyper-heuristic. The local search operators are the Lin–Kernighan (LK) and the Unstringing and Stringing (US) heuristics, and they were intelligently chosen to improve the solution obtained by ACO. The proposed method aims to combine the adaptation capabilities of ACO for DOPs and the good performance of the local search operators chosen in an adaptive way and based on their performance, creating in this way a hyper-heuristic. The travelling salesman problem (TSP) was the base problem to generate both symmetric and asymmetric dynamic test cases. Experiments have shown that the MMAS provides good initial solutions to the local search operators and the hyper-heuristic creates a robust and effective method for the vast majority of test cases.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1806
Author(s):  
Yuedong Zhang ◽  
Yuanbin Mo

The optimal solution of the chemical dynamic optimization problem is the basis of automatic control operation in the chemical process, which can reduce energy consumption, increase production efficiency, and maximize economic benefit. In this paper, a modified sailfish optimizer (MSFO) combined with an equal division method is proposed for solving chemical dynamic optimization problems. Based on the basic sailfish optimizer, firstly, the tent chaotic mapping strategy is introduced to disturb the initialization of sailfish and sardine populations to avoid the loss of population diversity. Secondly, an adaptive linear reduction strategy of attack parameters is proposed to enhance the exploration and exploitation ability of sailfish. Thirdly, the updating formula of sardine position is modified, and the global optimal solution is used to attract all sardine positions, which can avoid the premature phenomenon of the algorithm. Eventually, the MSFO is applied to solve six classical optimization cases of chemical engineering to evaluate its feasibility. The experimental results are analyzed and compared with other optimization methods to prove the superiority of the MSFO in solving chemical dynamic optimization problems.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1037
Author(s):  
Le Xu ◽  
Yuanbin Mo ◽  
Yanyue Lu ◽  
Jiang Li

The numerical solution of the dynamic optimization problem is often sought for chemical processes, but the discretization of control variables is a difficult problem. Firstly, based on the analysis of the seagull optimization algorithm, this paper introduces the cognitive part in the process of a seagull’s attack behavior to make the group approach the best position. Secondly, the algorithm adds the mechanism of natural selection, where the fitness value is used to sort the population, and the best half is used to replace the worst half, so as to find out the optimal solution. Finally, the improved seagull optimization algorithm (ISOA) is combined with the unequal division method to solve dynamic optimization problems. The feasibility of the method is verified by three practical examples of dynamic optimization in chemical industry.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1903
Author(s):  
Edwards Cerqueira de Castro ◽  
Evandro Ottoni Teatini Salles ◽  
Patrick Marques Ciarelli

This work proposes a new approach to improve swarm intelligence algorithms for dynamic optimization problems by promoting a balance between the transfer of knowledge and the diversity of particles. The proposed method was designed to be applied to the problem of video tracking targets in environments with almost constant lighting. This approach also delimits the solution space for a more efficient search. A robust version to outliers of the double exponential smoothing (DES) model is used to predict the target position in the frame delimiting the solution space in a more promising region for target tracking. To assess the quality of the proposed approach, an appropriate tracker for a discrete solution space was implemented using the meta-heuristic Shuffled Frog Leaping Algorithm (SFLA) adapted to dynamic optimization problems, named the Dynamic Shuffled Frog Leaping Algorithm (DSFLA). The DSFLA was compared with other classic and current trackers whose algorithms are based on swarm intelligence. The trackers were compared in terms of the average processing time per frame and the area under curve of the success rate per Pascal metric. For the experiment, we used a random sample of videos obtained from the public Hanyang visual tracker benchmark. The experimental results suggest that the DSFLA has an efficient processing time and higher quality of tracking compared with the other competing trackers analyzed in this work. The success rate of the DSFLA tracker is about 7.2 to 76.6% higher on average when comparing the success rate of its competitors. The average processing time per frame is about at least 10% faster than competing trackers, except one that was about 26% faster than the DSFLA tracker. The results also show that the predictions of the robust DES model are quite accurate.


Sign in / Sign up

Export Citation Format

Share Document