electron transfer rate
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 48)

H-INDEX

44
(FIVE YEARS 4)

Author(s):  
Jasvinder Kaur ◽  
Rajdeep Malik ◽  
Dushyant Gangwar

Salicylaldehyde (SA) is used in numerous biological, pharmaceutical, and industrial applications. Releasing effluents from these industries contaminates water. So the degradation of salicylaldehyde is necessitated. The electrochemical degradation of salicylaldehyde in buffered media was studied using the eco-friendly cyclic voltammetry (CV) technique on a platinum electrode at different scan rates. Kinetic and electrochemical parameters were evaluated for the reaction such as standard heterogeneous rate constant (k0,2.468×103 s-1 ), anodic electron transfer rate constant (kox,2.507×103 s-1), electron transfer coefficient of reaction (?,0.673), and formal potential (E0, 1.0937) under the influence of scan rate. The nature of the reaction is found to be diffusion controlled. The concentration study in the range of 1 mM to 4 mM was calibrated. The limit of detection and the limit of quantification were calculated to be 0.0031 mM and 0.0103 mM respectively.


2021 ◽  
Vol 19 (11) ◽  
pp. 102-107
Author(s):  
Mohammed Kamilharmoosh ◽  
Mohsin A. Hassooni ◽  
Hadi J.M. Al-Agealy

The dye–semiconductor interface between N749 sensitized and zinc semiconductor (ZnSe) has been investigated and studied according to quantum transition theory with focusing on the electron transfer processes from the N749 sensitized (donor) to the ZnSe semiconductor (acceptor). The electron transfer rate constant and the orientation energy were studied and evaluated depended on the polarity of solvents according to refractive index and dielectric constant coefficient of solvents and ZnSe semiconductor. Attention focusing on the influence of orientation energies on the behavior of electron transfer rate constant. Differentdata of rate constant was discussion with orientation energy and effective driving energy for N749-ZnSe system. Furthermore, the electron transfer rate constant is increased with less orientation energy at less effective driving energy while the electron transfer rate constant increased with large orientation energy with large effective driving energy, as seen as the electron transfer rate reach to 1.3109 × 1011 with less orientation energy has 0.188708eV at effective driving energy E=0.22eV comparing the rate reach to 9.7207× 10−96 with driving energy E=1.89eV and same orientation energy. In general, the electron transfer rate constant increases with increases the coupling coefficient of system, its indicate that alignment of energy levels are very good between N749 sensitized metal and ZnSe semiconductor.


Author(s):  
Tahir Raza ◽  
Lijun Qu ◽  
Waquar Ahmed Khokhar ◽  
Boakye Andrews ◽  
Afzal Ali ◽  
...  

Conductive nanomaterials have recently gained a lot of interest due to their excellent physical, chemical, and electrical properties, as well as their numerous nanoscale morphologies, which enable them to be fabricated into a wide range of modern chemical and biological sensors. This study focuses mainly on current applications based on conductive nanostructured materials. They are the key elements in preparing wearable electrochemical Biosensors, including electrochemical immunosensors and DNA biosensors. Conductive nanomaterials such as carbon (Carbon Nanotubes, Graphene), metals and conductive polymers, which provide a large effective surface area, fast electron transfer rate and high electrical conductivity, are summarized in detail. Conductive polymer nanocomposites in combination with carbon and metal nanoparticles have also been addressed to increase sensor performance. In conclusion, a section on current challenges and opportunities in this growing field is forecasted at the end.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3086
Author(s):  
Chuhan Lv ◽  
Xuewei Yang ◽  
Zongkang Wang ◽  
Ming Ying ◽  
Qingguo Han ◽  
...  

This research reveals the improved performance of bioelectrodes made with amination-modified glucose oxidase (GOx-NH2) and carboxyl-functionalized mesoporous carbon (OMC-COOH). Results showed that when applied with 10 mM EDC amination, the functional groups of NH2 were successfully added to GOx, according to the analysis of 1H-NMR, elemental composition, and FTIR spectra. Moreover, after the aminated modification, increased enzyme immobilization (124.01 ± 1.49 mg GOx-NH2/g OMC-COOH; 2.77-fold increase) and enzyme activity (1.17-fold increase) were achieved, compared with those of non-modified GOx. Electrochemical analysis showed that aminated modification enhanced the peak current intensity of Nafion/GOx-NH2/OMC-COOH (1.32-fold increase), with increases in the charge transfer coefficient α (0.54), the apparent electron transfer rate constant ks (2.54 s−1), and the surface coverage Γ (2.91 × 10−9 mol·cm−2). Results showed that GOx-NH2/OMC-COOH exhibited impressive electro-activity and a favorable anodic reaction.


Author(s):  
Abel Ibrahim Balbin Tamayo ◽  
Leodanis Correa Fajardo ◽  
Ana Margarita Esteva Guas

Graphite-epoxy composites (GECs) are alternative construction materials for electro­chemical sensors. For these materials, the electron transfer rate constant of some redox reaction depends additionally on the stoichiometric relationship between the insulating and conducting phases of the composite. In this work, the influence of dif­fe­rent ratios of araldite/hardener/graphite on the electrochemical properties of GEC electrodes is evaluated for the simultaneous determination of adenine and guanine in the single chain DNA, using the square wave voltammetry technique. Six GEC electro­des were prepared with different ratios of components, and electrochemically charac­terized by cyclic voltammetry in the presence of ferri/ferrocyanide redox couple as a redox probe. GEC electrodes that showed the best electrochemical responses of redox probe were characterized by thermogravimetric analysis (TGA) and used for the simul­taneous determination of free adenine and guanine in a solution, and DNA oligonu­cle­otides. The best results were obtained for GEC electrodes containing twice higher volu­me of araldite resin with respect to the hardener. TGA analysis revealed presence of 15-26 % of resin for these GEC electrodes. The obtained results revealed potential appl­ication of these GEC electrodes as DNA sensors based on the oxidation signal of guanine.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaoxuan Xu ◽  
Lei Liu

AbstractMolybdenum disulfide (MoS2) has moderate hydrogen adsorption free energy, making it an excellent alternative to replace noble metals as hydrogen evolution reaction (HER) catalysts. The thickness of MoS2 can affect its energy band structure and interface engineering, which are the avenue way to adjust HER performance. In this work, MoS2 films with different thicknesses were directly grown on the glassy carbon (GC) substrate by atomic layer deposition (ALD). The thickness of the MoS2 films can be precisely controlled by regulating the number of ALD cycles. The prepared MoS2/GC was directly used as the HER catalyst without a binder. The experimental results show that MoS2 with 200-ALD cycles (the thickness of 14.9 nm) has the best HER performance. Excessive thickness of MoS2 films not only lead to the aggregation of dense MoS2 nanosheets, resulting in reduction of active sites, but also lead to the increase of electrical resistance, reducing the electron transfer rate. MoS2 grown layer by layer on the substrate by ALD technology also significantly improves the bonding force between MoS2 and the substrate, showing excellent HER stability.


2021 ◽  
Vol 1039 ◽  
pp. 363-372
Author(s):  
Hadi J.M. Al-Agealy ◽  
Sarmad S. Al-Obaidi ◽  
Saadi R. Abbas

In this paper, a theoretical model is used to investigate and evaluate the electronic transfer rate by using Au metal contact with 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline, known as BCP. Electron transfer process is a necessary in variety electronic devices. The electron transfer rate investigates and calculates for Au/BCP interface due to transition energy, Fermi energy, ionization energy and strength coupling to calculate results in a wide solvent media. In this work, the Au metal is used a donor state with BCP molecule as acceptor to study the electron transfer process with changing thirteen solvents media. The results show that electron transfer parameters of the Au/BCP system have been strong dependent on transition energy. It's given acceptable rate in room temperature with barrier ranging 1.169, 1.091, 1.081, 1.086 and 1.064 eV for Diethyl ether, Ethyl, Tetrahydrofuran (THF), Acetic acid and 1,2-Dimethoxyethane as result to have low transition energy compare with 0.946, 0.940, 0.967, 0.951, 0.970 and 0.977 eV for Methanol, Water, Acetone, Ethanol, Acetonitrile and 2,2,2-Trifluoroethanol because have large transition energy.The Au/BCP device has large electron transfer rate with water and Methanol in range 19.328 × 10-9 to 15.205 × 10-9 (cm4/ sec) compare with low electron transfer rate with Diethyl and Ethyl acetate in range 0.006 × 10-9 to 0.091 × 10-9 (cm4/ sec). Moreover, the devices that are employing Au in contact with BCP show higher electronic transfer rate with less polarity solvent.


Sign in / Sign up

Export Citation Format

Share Document