renal tubular epithelial cell
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 48)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Qianlin Song ◽  
Wenbiao Liao ◽  
Xin Chen ◽  
Ziqi He ◽  
De Li ◽  
...  

Renal tubular epithelial cell damage is the basis for the formation of kidney stones. Oxalate can induce human proximal tubular (HK-2) cells to undergo autophagy and ferroptosis. The present study was aimed at investigating whether the ferroptosis of HK-2 cells induced by oxalate is caused by the excessive activation of autophagy. We treated HK-2 cells with 2 mmol/L of oxalate to establish a kidney stone model. First, we tested the degree of oxidative damage and the level of autophagy and ferroptosis in the control group and the oxalate intervention group. We then knocked down and overexpressed the BECN1 gene and knocked down the NCOA4 gene in HK-2 cells, followed by redetection of the above indicators. We confirmed that oxalate could induce autophagy and ferroptosis in HK-2 cells. Moreover, after oxalate treatment, overexpression of the BENC1 gene increased cell oxidative damage and ferroptosis. In addition, knockdown of NCOA4 reversed the effect of oxalate-induced ferroptosis in HK-2 cells. Our results show that the effects of oxalate on the ferroptosis of HK-2 cells are caused by the activation of autophagy, and knockdown of the NCOA4 could ameliorate this effect.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Fei Gao ◽  
Mingjiang Qian ◽  
Guoyue Liu ◽  
Wanping Ao ◽  
Dahua Dai ◽  
...  

Abstract Background Severe sepsis, a major health problem worldwide, has become one of the leading causes of death in ICU patients. Further study on the pathogenesis and treatment of acute kidney injury (AKI) is of great significance to reduce high mortality rate of sepsis. In this study, the mechanism by which ubiquitin specific peptidase 10 (USP10) reduces sepsis-induced AKI was investigated. Ligation and perforation of cecum (CLP) was employed to establish C57BL/6 mouse models of sepsis. Hematoxylin-eosin (H&E) staining was performed to detect renal injury. The concentrations of serum creatinine (Cr), urea nitrogen (BUN) and cystatin C (Cys C) were determined using a QuantiChrom™ Urea Assay kit. RT-qPCR and western blot were conducted to assess the USP10 expression level. DHE staining was used to detect reactive oxygen species (ROS) levels. H2O2, MDA and SOD levels were assessed using corresponding colorimetric kits. Western blot was used to examine the expression levels of Bcl-2, Bax, cleaved caspase-3, Sirt6, Nrf2 and HO-1. MTT assay was used to determine cell viability, whereas TUNEL staining and flow cytometry were used to assess cell apoptosis. Results In this study, we found that USP10 was decreased in CLP-induced mouse renal tissues. We identified that USP10 alleviated renal dysfunction induced by CLP. Moreover, USP10 was found to reduce oxidative stress, and abated LPS-induced renal tubular epithelial cell injury and apoptosis. Finally, we discovered that USP10 promoted activation of the NRF2/HO-1 pathway through SIRT6 and attenuated LPS-induced renal tubular epithelial cell injury. Conclusions This study found that USP10 activates the NRF2/ARE signaling through SIRT6. USP10 alleviates sepsis-induced renal dysfunction and reduces renal tubular epithelial cell apoptosis and oxidative stress.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yonghan Peng ◽  
Ziyu Fang ◽  
Min Liu ◽  
Zeyu Wang ◽  
Ling Li ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


Sign in / Sign up

Export Citation Format

Share Document