edge populations
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 39)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Maxime Dahirel ◽  
Chloe Guicharnaud ◽  
Elodie Vercken

Ecological and evolutionary dynamics of range expansions are shaped by both dispersal and population growth. Accordingly, density-dependence in either dispersal or growth can determine whether expansions are pulled or pushed, i.e. whether expansion velocities and genetic diversity are mainly driven by recent, low-density edge populations, or by older populations closer to the core. Despite this and despite abundant evidence of dispersal evolution during expansions, the impact of density-dependent dispersal and its evolution on expansion dynamics remains understudied. Here, we used simulation models to examine the influence of individual trait variation in both dispersal capacity and dispersal density-dependence on expansions, and how it impacts the position of expansions on the pulled-pushed continuum. First, we found that knowing about the evolution of density-dependent dispersal at the range edge can greatly improve our ability to predict whether an expansion is (more) pushed or (more) pulled. Second, we found that both dispersal costs and the sources of variation in dispersal (genetic or non-genetic, in dispersal capacity versus in density-dependence) greatly influence how expansion dynamics evolve. Among other scenarios, pushed expansions tended to become more pulled with time only when density-dependence was highly heritable, dispersal costs were low and dispersal capacity could not evolve. When, on the other hand, variation in density-dependence had no genetic basis, but dispersal capacity could evolve, then pushed expansions tended to become more pushed with time, and pulled expansions more pulled. More generally, our results show that trying to predict expansion velocities and dynamics using trait information from non-expanding regions only may be problematic, that both dispersal variation and its sources play a key role in determining whether an expansion is and stays pushed, and that environmental context (here dispersal costs) cannot be neglected. Those simulations suggest new avenues of research to explore, both in terms of theoretical studies and regarding ways to empirically study pushed vs. pulled range expansions.


2021 ◽  
Vol 13 (24) ◽  
pp. 13778
Author(s):  
Konstantinos Kougioumoutzis ◽  
Ioannis P. Kokkoris ◽  
Arne Strid ◽  
Thomas Raus ◽  
Panayotis Dimopoulos

Human-induced climate- and land-use change have been affecting biogeographical and biodiversity patterns for the past two centuries all over the globe, resulting in increased extinction and biotic homogenization rates. High mountain ecosystems are more sensitive to these changes, which have led to physiological and phenological shifts, as well as to ecosystem processes’ deformation. Glacial relicts, such as arctic-alpine taxa, are sensitive indicators of the effects of global warming and their rear-edge populations could include warm-adapted genotypes that might prove—conservation-wise—useful in an era of unprecedented climate regimes. Despite the ongoing thermophilization in European and Mediterranean summits, it still remains unknown how past and future climate-change might affect the distributional patterns of the glacial relict, arctic-alpine taxa occurring in Greece, their European southernmost distributional limit. Using species distribution models, we investigated the impacts of past and future climate changes on the arctic-alpine taxa occurring in Greece and identified the areas comprising arctic-alpine biodiversity hotspots in Greece. Most of these species will be faced with severe range reductions in the near future, despite their innate resilience to a multitude of threats, while the species richness hotspots will experience both altitudinal and latitudinal shifts. Being long-lived perennials means that there might be an extinction-debt present in these taxa, and a prolonged stability phase could be masking the deleterious effects of climate change on them. Several ex situ conservation measures (e.g., seed collection, population augmentation) should be taken to preserve the southernmost populations of these rare arctic-alpine taxa and a better understanding of their population genetics is urgently needed.


Author(s):  
Sonal Singhal ◽  
John Wrath ◽  
Daniel Rabosky

For many species, both local abundance and regional occupancy are highest near the center of their geographic distributions. One hypothesis for this pattern is that niche suitability declines with increasing distance from a species geographic center, such that populations near range margins are characterized by reduced density and increased patchiness. In these smaller edge populations, genetic drift is more powerful, leading to the loss of genetic diversity. This simple verbal model has been formalized as the central-marginal hypothesis, which predicts that core populations should have greater genetic diversity than edge populations. However, demographic shifts over time can generate a similar pattern. For example, in species with expanding ranges, populations at the range edge experience serial founder effects, creating a gradient of declining genetic diversity from the range core to edge. Testing the central-marginal hypothesis properly thus requires us to consider the confounding role of historical demography. Here, we account for the role of history in testing the central-marginal hypothesis using a genomic dataset of 25 species-level taxa of Australian skink lizards (genus: Ctenotus and Lerista). We found support for the central-marginal hypothesis in 16 of our 25 taxa, of which eight taxa recovered significant support. Unexpectedly, species with the strongest evidence for range expansion were the least likely to follow predictions of the central-marginal hypothesis. The majority of these species had range expansions that originated at the range edge, which led to lower genetic diversity at the range edge compared to the core, contrary to the central-marginal hypothesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David Outomuro ◽  
Maria J. Golab ◽  
Frank Johansson ◽  
Szymon Sniegula

AbstractLarge-scale latitudinal studies that include both north and south edge populations and address sex differences are needed to understand how selection has shaped trait variation. We quantified the variation of flight-related morphological traits (body size, wing size, ratio between wing size and body size, and wing shape) along the whole latitudinal distribution of the damselfly Lestes sponsa, spanning over 2700 km. We tested predictions of geographic variation in the flight-related traits as a signature of: (1) stronger natural selection to improve dispersal in males and females at edge populations; (2) stronger sexual selection to improve reproduction (fecundity in females and sexual behaviors in males) at edge populations. We found that body size and wing size showed a U-shaped latitudinal pattern, while wing ratio showed the inverse shape. However, wing shape varied very little along the latitudinal gradient. We also detected sex-differences in the latitudinal patterns of variation. We discuss how latitudinal differences in natural and sexual selection regimes can lead to the observed quadratic patterns of variation in body and wing morphology via direct or indirect selection. We also discuss the lack of latitudinal variation in wing shape, possibly due to aerodynamic constraints.


2021 ◽  
Author(s):  
José Luis Tellería ◽  
Ricardo Enrique Hernández‐Lambraño ◽  
Roberto Carbonell

2021 ◽  
Vol 376 (1833) ◽  
pp. 20200105 ◽  
Author(s):  
Mitsuaki Ogata ◽  
Kazuo Suzuki ◽  
Yoshiaki Yuasa ◽  
Ikuo Miura

Sex chromosomes generally evolve from a homomorphic to heteromorphic state. Once a heteromorphic system is established, the sex chromosome system may remain stable for an extended period. Here, we show the opposite case of sex chromosome evolution from a heteromorphic to a homomorphic system in the Japanese frog Glandirana rugosa. One geographic group, Neo-ZW, has ZZ-ZW type heteromorphic sex chromosomes. We found that its western edge populations, which are geographically close to another West-Japan group with homomorphic sex chromosomes of XX-XY type, showed homozygous genotypes of sex-linked genes in both sexes. Karyologically, no heteromorphic sex chromosomes were identified. Sex-reversal experiments revealed that the males were heterogametic in sex determination. In addition, we identified another similar population around at the southwestern edge of the Neo-ZW group in the Kii Peninsula: the frogs had homomorphic sex chromosomes under male heterogamety, while shared mitochondrial haplotypes with the XY group, which is located in the east and bears heteromorphic sex chromosomes. In conclusion, our study revealed that the heteromorphic sex chromosome systems independently reversed back to or turned over to a homomorphic system around each of the western and southwestern edges of the Neo-ZW group through hybridization with the West-Japan group bearing homomorphic sex chromosomes. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.


Botany ◽  
2021 ◽  
Author(s):  
Mariana Salgado ◽  
Leonardo Ariel Gallo ◽  
Cristian Daniel Torres ◽  
Marina Stecconi ◽  
Javier Guido Puntieri

The conditions faced by edge populations of a tree species may affect the architecture of individual trees. The latitudinally broad range of Salix humboldtiana encompasses tropical to cold-temperate climatic regions, with its southernmost population in central Patagonia. We expected S. humboldtiana trees from the southern-edge population to develop smaller shoots and a lower level of axis differentiation than trees of this species from a more northerly population, and expected edge trees to outperform non-edge trees when growing in common-garden at an intermediate latitude. For juvenile individuals of S. humboldtiana from edge and non-edge natural populations, trunk diameter, height, branching angle, and the length, number of nodes, diameter, leaf area and specific leaf area of main branch and trunk annual shoots were measured. The size and extension rates of shoots developed by trees of both origins in a common-garden were also evaluated. In natural populations, shoot leaf area and specific leaf area were higher for the edge population than for non-edge population. In common garden, shoot extension period and length were higher for non-edge plants than for edge plants. Growth-period differences between populations in the common garden may support the hypothesis of stress adaptation in the southernmost S. humboldtiana trees.


2021 ◽  
Author(s):  
Lepais Olivier ◽  
Abdeldjalil Aissi ◽  
Errol Véla ◽  
Yassine Beghami

Rear-edge populations represent reservoirs of potentially unique genetic diversity but are particularly vulnerable to global changes. While continental-scale phylogeographic studies usually do not cover these populations, more focused local scale study of rear-edge populations should help better understand both past evolutionary history and its consequences for the persistence and conservation of these potentially unique populations. We studied molecular variation at 36 sequenced nuclear microsatellites in 11 rear-edge Quercus faginea and Q. canariensis populations across Algeria to shed light on taxonomic relationship, population past evolutionary history and recent demographic trajectory. We used descriptive approach and simulation-based inference to assess the information content and complementarity of linked microsatellite and flanking sequence variations. Genetic differentiation among populations classified into eight well-defined genetic clusters do not allow to unambiguously delineate two species. Instead, continuous level of genetic differentiation indicates interspecific gene flow or drift in isolation. Whereas the analysis of microsatellite variation allowed inferring recent interspecific gene flow, additional nucleotide variation in flanking sequences, by reducing homoplasy, pointed towards ancient interspecific gene flow followed by drift in isolation. The assessment of the weight of each polymorphism in the inference demonstrates the value of linked variation with contrasted mutational mechanisms and rates to refine historical demographic inference. Past population size decline inferred in some of these oak populations as well as low contemporary effective population size for most populations is a concern for the persistence of these populations of high evolutionary significance and conservation value.


Sign in / Sign up

Export Citation Format

Share Document