vestibulosympathetic reflex
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 0)

H-INDEX

14
(FIVE YEARS 0)

2016 ◽  
Vol 116 (6) ◽  
pp. 2752-2764 ◽  
Author(s):  
S. B. Yakushin ◽  
G. P. Martinelli ◽  
T. Raphan ◽  
B. Cohen

The vestibulosympathetic reflex (VSR) increases blood pressure (BP) upon arising to maintain blood flow to the brain. The optimal directions of VSR activation and whether changes in heart rate (HR) are associated with changes in BP are still not clear. We used manually activated pulses and oscillatory linear accelerations of 0.2–2.5 g along the naso-occipital, interaural, and dorsoventral axes in isoflurane-anesthetized, male Long-Evans rats. BP and HR were recorded with an intra-aortic sensor and acceleration with a three-dimensional accelerometer. Linear regressions of BP changes in accelerations along the upward, downward, and forward axes had slopes of ≈3–6 mmHg · g−1 ( P < 0.05). Lateral and backward accelerations did not produce consistent changes in BP. Thus upward, downward, and forward translations were the directions that significantly altered BP. HR was unaffected by these translations. The VSR sensitivity to oscillatory forward-backward translations was ≈6–10 mmHg · g−1 at frequencies of ≈0.1 Hz (0.2 g), decreasing to zero at frequencies above 2 Hz (1.8 g). Upward, 70° tilts of an alert rat increased BP by 9 mmHg · g−1 without changes in HR, indicating that anesthesia had not reduced the VSR sensitivity. The similarity in BP induced in alert and anesthetized rats indicates that the VSR is relatively insensitive to levels of alertness and that the VSR is likely to cause changes in BP through modification of peripheral vascular resistance. Thus the VSR, which is directed toward the cardiovascular system, is in contrast to the responses in the alert state that can produce sweating, alterations in BP and HR, and motion sickness.


2013 ◽  
Vol 305 (10) ◽  
pp. H1555-H1559
Author(s):  
Chester A. Ray ◽  
Charity L. Sauder ◽  
Stephanie A. Chin-Sang ◽  
Jonathan S. Cook

Incidences of adverse cardiac events and orthostatic hypotension are associated with diurnal variations. The primary purpose of the present study was to determine if the vestibulosympathetic reflex (VSR) follows a diurnal variation in humans. We hypothesized that the VSR would be attenuated at night based on the relation between melatonin and the VSR. Arterial blood pressure, heart rate, calf blood flow, and muscle sympathetic nerve activity (MSNA) were measured in nine healthy subjects (28 ± 1 yr, 5 men and 4 women) at rest and during head-down rotation. Each subject was tested during the day at 11:34 ± 13 and again at night 22:10 ± 5. MSNA was significantly decreased at night compared with day (8 ± 1 vs. 11 ± 2 bursts/min, respectively, P < 0.02). Heart rate and arterial blood pressure at rest were significantly increased at night compared with day (heart rate: 70 ± 4 vs. 66 ± 4 beats/min and mean arterial blood pressure: 91 ± 2 vs. 87 ± 1 mmHg, respectively). MSNA and hemodynamic responses to head-down rotation were not significantly altered at night compared with day (changes of 3 ± 1 bursts/min and 25 ± 6% for MSNA and calf blood flow, respectively). The data indicate that MSNA at rest decreases during the late evening hours and exhibits a diurnal variation, whereas the VSR does not. In summary, diurnal variation of orthostatic hypotension in humans does not appear to be associated with changes in the VSR and MSNA at rest.


2013 ◽  
Vol 27 (7) ◽  
pp. 2564-2572 ◽  
Author(s):  
Bernard Cohen ◽  
Giorgio P. Martinelli ◽  
Theodore Raphan ◽  
Adam Schaffner ◽  
Yongqing Xiang ◽  
...  

2012 ◽  
Vol 302 (1) ◽  
pp. H368-H374 ◽  
Author(s):  
Damian J. Dyckman ◽  
Charity L. Sauder ◽  
Chester A. Ray

The mechanism(s) for post-bed rest (BR) orthostatic intolerance is equivocal. The vestibulosympathetic reflex contributes to postural blood pressure regulation. It was hypothesized that muscle sympathetic nerve responses to otolith stimulation would be attenuated by prolonged head-down BR. Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and peripheral vascular conductance were measured during head-down rotation (HDR; otolith organ stimulation) in the prone posture before and after short-duration (24 h; n = 22) and prolonged (36 ± 1 day; n = 8) BR. Head-up tilt at 80° was performed to assess orthostatic tolerance. After short-duration BR, MSNA responses to HDR were preserved (Δ5 ± 1 bursts/min, Δ53 ± 13% burst frequency, Δ65 ± 13% total activity; P < 0.001). After prolonged BR, MSNA responses to HDR were attenuated ∼50%. MSNA increased by Δ8 ± 2 vs. Δ3 ± 2 bursts/min and Δ83 ± 12 vs. Δ34 ± 22% total activity during HDR before and after prolonged BR, respectively. Moreover, these results were observed in three subjects tested again after 75 ± 1 days of BR. This reduction in MSNA responses to otolith organ stimulation at 5 wk occurred with reductions in head-up tilt duration. These results indicate that prolonged BR (∼5 wk) unlike short-term BR (24 h) attenuates the vestibulosympathetic reflex and possibly contributes to orthostatic intolerance following BR in humans. These results suggest a novel mechanism in the development of orthostatic intolerance in humans.


2011 ◽  
Vol 300 (3) ◽  
pp. R630-R634 ◽  
Author(s):  
Damian J. Dyckman ◽  
Charity L. Sauder ◽  
Chester A. Ray

The glycerol dehydration test (GDT) has been used to test for the presence of Ménière's disease and elicits acute alterations in vestibular reflexes in both normal and pathological states. Activation of the vestibulosympathetic reflex (VSR) increases muscle sympathetic nerve activity (MSNA) and peripheral vascular resistance. We hypothesized that the GDT would attenuate the VSR through fluid shifts of the inner ear. Sixteen male subjects (26 ± 1 yr) were randomly assigned to be administered either glycerol mixed with cranberry juice (97 ± 3 ml glycerol + equal portion of cranberry juice; n = 9) or a placebo control [water + cranberry juice (100 ml each); n = 7]. Subjects in both groups performed head-down rotation (HDR), which engages the VSR, before and after administration of either the glycerol or placebo. MSNA (microneurography), arterial blood pressure, and leg blood flow (venous occlusion plethysmography) were measured during HDR. Before glycerol administration, HDR significantly increased MSNA burst frequency (Δ8 ± 1 bursts/min; P < 0.01) and total activity (Δ77 ± 18%; P < 0.01) and decreased calf vascular conductance (−Δ20 ± 3%; P < 0.01). However, HDR performed postadministration of glycerol resulted in an attenuated MSNA increase (Δ3 ± 1 bursts/min, Δ22 ± 3% total activity) and decrease in calf vascular conductance (−Δ7 ± 4%). HDR significantly increased MSNA burst frequency (Δ5 ± 1 and Δ5 ± 2 bursts/min) and total activity (Δ58 ± 13% and Δ52 ± 18%) in the placebo group before and after placebo, respectively ( P < 0.01). Likewise, decreases in calf vascular conductance during HDR before and after placebo were not different (−Δ13 ± 4% and −Δ14 ± 2%, respectively; P < 0.01). These results suggest that fluid shifts of the inner ear via glycerol dehydration attenuate the VSR. These data provide support that inner ear fluid dynamics can have a significant impact on blood pressure regulation via the VSR in humans.


2010 ◽  
Vol 109 (6) ◽  
pp. 1697-1701 ◽  
Author(s):  
Jonathan S. Cook ◽  
Chester A. Ray

Melatonin has been reported to decrease nerve activity of medial vestibular nuclei in the rat and is associated with attenuated muscle sympathetic nerve activity (MSNA) responses to baroreceptor unloading in humans. The purpose of this study was to determine if melatonin alters the vestibulosympathetic reflex (VSR) and vestibulocollic reflex (VCR) in humans. In study 1, MSNA, arterial blood pressure, and heart rate were measured in 12 healthy subjects (28 ± 1 yr; 6 men, 6 women) during head-down rotation (HDR) before and 45 min after ingestion of either melatonin (3 mg) or placebo (sucrose). Subjects returned at least 2 days later at the same time of day to repeat the trial after ingesting the opposite treatment (melatonin or placebo). Melatonin significantly attenuated MSNA responses during HDR compared with placebo (burst frequency Δ 4 ± 1 vs. Δ 7 ± 1 bursts/min, and total MSNA Δ 51 ± 20 and Δ 96 ± 15%, respectively; P < 0.02). In study 2, vestibular evoked myogenic potentials (VEMP) were measured in 10 healthy subjects (26 ± 1 yr; 4 men and 6 women) before and after ingestion of 3 mg melatonin. Melatonin did not alter the timing of the p13 and n23 peaks (pre-melatonin 13.2 ± 0.4 and 21.3 ± 0.6 ms vs. post-melatonin 13.5 ± 0.4 and 21.4 ± 0.7 ms, respectively) or the p13-n23 interpeak amplitudes [pre-melatonin 22.5 ± 4.6 arbitrary units (au) and post-melatonin 22.7 ± 4.6 au]. In summary, melatonin attenuates the VSR and supports the concept that melatonin negatively affects orthostatic tolerance. However, melatonin does not alter the VCR in humans suggesting melatonin's effect on the VSR appears to be mediated by the utricles.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Jonathan S Cook ◽  
Stephanie A Chin‐Sang ◽  
Charity L Sauder ◽  
Chester A Ray

Sign in / Sign up

Export Citation Format

Share Document