fatty acid synthesis
Recently Published Documents


TOTAL DOCUMENTS

1736
(FIVE YEARS 197)

H-INDEX

100
(FIVE YEARS 9)

2022 ◽  
Vol 8 ◽  
Author(s):  
Mohua Dasgupta ◽  
Arumugam Kumaresan ◽  
Kaustubh Kishor Saraf ◽  
Pradeep Nag ◽  
Manish Kumar Sinha ◽  
...  

Male fertility is extremely important in dairy animals because semen from a single bull is used to inseminate several thousand females. Asthenozoospermia (reduced sperm motility) and oligozoospermia (reduced sperm concentration) are the two important reasons cited for idiopathic infertility in crossbred bulls; however, the etiology remains elusive. In this study, using a non-targeted liquid chromatography with tandem mass spectrometry-based approach, we carried out a deep metabolomic analysis of spermatozoa and seminal plasma derived from normozoospermic and astheno-oligozoospermic bulls. Using bioinformatics tools, alterations in metabolites and metabolic pathways between normozoospermia and astheno-oligozoospermia were elucidated. A total of 299 and 167 metabolites in spermatozoa and 183 and 147 metabolites in seminal plasma were detected in astheno-oligozoospermic and normozoospermic bulls, respectively. Among the mapped metabolites, 75 sperm metabolites were common to both the groups, whereas 166 and 50 sperm metabolites were unique to astheno-oligozoospermic and normozoospermic bulls, respectively. Similarly, 86 metabolites were common to both the groups, whereas 45 and 37 seminal plasma metabolites were unique to astheno-oligozoospermic and normozoospermic bulls, respectively. Among the differentially expressed metabolites, 62 sperm metabolites and 56 seminal plasma metabolites were significantly dysregulated in astheno-oligozoospermic bulls. In spermatozoa, selenocysteine, deoxyuridine triphosphate, and nitroprusside showed significant enrichment in astheno-oligozoospermic bulls. In seminal plasma, malonic acid, 5-diphosphoinositol pentakisphosphate, D-cysteine, and nicotinamide adenine dinucleotide phosphate were significantly upregulated, whereas tetradecanoyl-CoA was significantly downregulated in the astheno-oligozoospermia. Spermatozoa from astheno-oligozoospermic bulls showed alterations in the metabolism of fatty acid and fatty acid elongation in mitochondria pathways, whereas seminal plasma from astheno-oligozoospermic bulls showed alterations in synthesis and degradation of ketone bodies, pyruvate metabolism, and inositol phosphate metabolism pathways. The present study revealed vital information related to semen metabolomic differences between astheno-oligozoospermic and normospermic crossbred breeding bulls. It is inferred that fatty acid synthesis and ketone body degradations are altered in the spermatozoa and seminal plasma of astheno-oligozoospermic crossbred bulls. These results open up new avenues for further research, and current findings can be applied for the modulation of identified pathways to restore sperm motility and concentration in astheno-oligozoospermic bulls.


Biologia ◽  
2022 ◽  
Author(s):  
Jovana V. Jovankić ◽  
Danijela M. Cvetković ◽  
Milena G. Milutinović ◽  
Danijela D. Nikodijević ◽  
Aleksandra G. Nikezić ◽  
...  

2022 ◽  
Author(s):  
Chetna Dhembla ◽  
Usha Yadav ◽  
Suman Kundu ◽  
Monica Sundd

Lipoic acid is a sulfur containing cofactor, indispensable for the function of several metabolic enzymes. In microorganisms, lipoic acid can be salvaged from the surroundings by Lipoate protein ligase A (LplA), an ATP-dependent enzyme. Alternatively, it can be synthesized by the sequential action of Lipoate protein ligase B (LipB) and Lipoyl synthase (LipA). LipB uptakes octanoyl- chain from C8-acyl carrier protein (C8-ACP), a byproduct of the type II fatty acid synthesis pathway and transfers it to a conserved lysine of the lipoyl domain of a dehydrogenase. The molecular basis of substrate recognition by LipB is still not fully understood. Using E. coli LipB as a model enzyme, we show that an octanoyl-transferase mainly recognizes the 4-phosphopantetheine tethered acyl-chain of its donor substrate and weakly binds the apo-acyl carrier protein. LipB can accept octanoate- from its own ACP, noncognate ACPs, as well as C8-CoA. Further, our NMR studies demonstrate the presence of an adenine and phosphate binding site in LipB, akin to LplA. A loop containing 71RGG73 sequence, analogous to the lipoate binding loop of LplA is also conserved in LipB. Collectively, our studies highlight commonalities between LipB and LplA in their mechanism of substrate recognition. This knowledge might be of significance in the treatment of mitochondrial fatty acid synthesis related disorders.


iScience ◽  
2022 ◽  
pp. 103766
Author(s):  
Keerthana B ◽  
Raghavender Medishetti ◽  
Jyothi Kotha ◽  
Parameshwar Behera ◽  
Kanika Chandra ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 409
Author(s):  
Anna Janik ◽  
Urszula Perlińska-Lenart ◽  
Katarzyna Gawarecka ◽  
Justyna Augustyniak ◽  
Ewelina Bratek-Gerej ◽  
...  

Protein glycosylation requires dolichyl phosphate as a carbohydrate carrier. Dolichols are α-saturated polyprenols, and their saturation in S. cerevisiae is catalyzed by polyprenyl reductase Dfg10 together with some other unknown enzymes. The aim of this study was to identify such enzymes in Candida. The Dfg10 polyprenyl reductase from S. cerevisiae comprises a C-terminal 3-oxo-5-alpha-steroid 4-dehydrogenase domain. Alignment analysis revealed such a domain in two ORFs (orf19.209 and orf19.3293) from C. albicans, which were similar, respectively, to Dfg10 polyprenyl reductase and Tsc13 enoyl-transferase from S. cerevisiae. Deletion of orf19.209 in Candida impaired saturation of polyprenols. The Tsc13 homologue turned out not to be capable of saturating polyprenols, but limiting its expression reduce the cellular level of dolichols and polyprenols. This reduction was not due to a decreased expression of genes encoding cis-prenyltransferases from the dolichol branch but to a lower expression of genes encoding enzymes of the early stages of the mevalonate pathway. Despite the resulting lower consumption of acetyl-CoA, the sole precursor of the mevalonate pathway, it was not redirected towards fatty acid synthesis or elongation. Lowering the expression of TSC13 decreased the expression of the ACC1 gene encoding acetyl-CoA carboxylase, the key regulatory enzyme of fatty acid synthesis and elongation.


2021 ◽  
pp. 0271678X2110671
Author(s):  
Yueman Zhang ◽  
Fengshi Li ◽  
Chen Chen ◽  
Yan Li ◽  
Wanqing Xie ◽  
...  

The metabolic reprogramming of peripheral CD4+ T cells that occurs after stroke can lead to imbalanced differentiation of CD4+ T cells, including regulation of T cells, and presents a promising target for poststroke immunotherapy. However, the regulatory mechanism underlying the metabolic reprogramming of peripheral CD4+ T cell remains unknown. In this study, using combined transcription and metabolomics analyses, flow cytometry, and conditional knockout mice, we demonstrate that the receptor for advanced glycation end products (RAGE) can relay the ischemic signal to CD4+ T cells, which underwent acetyl coenzyme A carboxylase 1(ACC1)-dependent metabolic reprogramming after stroke. Furthermore, by administering soluble RAGE (sRAGE) after stroke, we demonstrate that neutralization of RAGE reversed the enhanced fatty acid synthesis of CD4+ T cells and the post-stroke imbalance of Treg/Th17. Finally, we found that post-stroke sRAGE treatment protected against infarct volume and ameliorated functional recovery. In conclusion, sRAGE can serve as a novel immunometabolic modulator that ameliorates ischemic stroke recovery by inhibiting fatty acid synthesis and thus favoring CD4+ T cells polarization toward Treg after cerebral ischemia injury. The above findings provide new insights for the treatment of neuroinflammatory responses after ischemia stroke.


Cell Reports ◽  
2021 ◽  
Vol 37 (13) ◽  
pp. 110157
Author(s):  
Mengyao Xu ◽  
Long Ding ◽  
Jingjing Liang ◽  
Xiao Yang ◽  
Yuan Liu ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuanyuan Li ◽  
Chuan Zuo ◽  
Ling Gu

Abstract Background Acquired glucocorticoid (GC) resistance remains the main obstacle in acute lymphoblastic leukemia (ALL) therapy. The aim of the present study was to establish a novel GC-resistant B-ALL cell line and investigate its biological characteristics. Methods A cell culture technique was used to establish the GC-resistant cell line from the parental cell, NALM-6. Molecular and cellular biological techniques including flow cytometry, MTT assay, western blotting, DNA fingerprinting analysis and whole transcriptome sequencing (WTS) were used to characterize the GC-resistant cell lines. Nude mice were used for xenograft studies. Results The GC-resistant cell line, NALM-6/HDR, was established by culturing NALM-6 cells under hypoxia for 5 weeks with a single dexamethasone (Dex) treatment. We subcloned the NALM-6/HDR cell lines, and got 6 monoclone Dex-resistant cell lines, NALM-6/HDR-C1, C3, C4, C5, C6 and C9 with resistance index (RI) ranging from 20,000–50,000. NALM-6/HDR and its monoclone cell line, NALM-6/HDR-C5, exhibited moderate (RI 5–15) to high resistance (RI > 20) to Ara-c; low or no cross-resistance to L-Asp, VCR, DNR, and MTX (RI < 5). STR analysis confirmed that NALM-6/HDR and NALM-6/H were all derived from NALM-6. All these cells derived from NALM-6 showed similar morphology, growth curves, immunophenotype, chromosomal karyotype and tumorigenicity. WTS analysis revealed that the main metabolic differences between NALM-6 or NALM-6/H (GC-sensitive) and NALM-6/HDR (GC-resistant) were lipid and carbohydrates metabolism. Western blotting analysis showed that NALM-6/HDR cells had a low expression of GR and p-GR. Moreover, AMPK, mTORC1, glycolysis and de novo fatty acid synthesis (FAS) pathway were inhibited in NALM-6/HDR when compared with NALM-6. Conclusions NALM-6/HDR cell line may represent a subtype of B-ALL cells in patients who acquired GC and Ara-c resistance during the treatment. These patients may get little benefit from the available therapy target of AMPK, mTORC1, glycolysis and FAS pathway.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6973
Author(s):  
Ting-An Lin ◽  
Bo-Jun Ke ◽  
Shih-Cheng Cheng ◽  
Chun-Lin Lee

Alcohol is metabolized in liver. Chronic alcohol abuse results in alcohol-induced fatty liver and liver injury. Red quinoa (Chenopodium formosanum) was a traditional staple food for Taiwanese aborigines. Red quinoa bran (RQB) included strong anti-oxidative and anti-inflammatory polyphenolic compounds, but it was usually regarded as the agricultural waste. Therefore, this study is to investigate the effect of water and ethanol extraction products of RQB on the prevention of liquid alcoholic diet-induced acute liver injury in mice. The mice were given whole grain powder of red quinoa (RQ-P), RQB ethanol extract (RQB-E), RQB water extract (RQB-W), and rutin orally for 6 weeks, respectively. The results indicated that RQB-E, RQB-W, and rutin decreased alcoholic diet-induced activities of aspartate aminotransferase and alanine aminotransferase, and the levels of serum triglyceride, total cholesterol, and hepatic triglyceride. Hematoxylin and eosin staining of liver tissues showed that RQB-E and RQB-W reduced lipid droplet accumulation and liver injury. However, ethanol extraction process can gain high rutin and antioxidative agents contents from red quinoa, that showed strong effects in preventing alcoholic fatty liver disease and liver injury via increasing superoxide dismutase/catalase antioxidative system and repressing the expressions of fatty acid synthesis enzyme acetyl-CoA carboxylase.


Author(s):  
Lakhveer Singh ◽  
Subhadeep Roy ◽  
Anurag Kumar ◽  
Shubham Rastogi ◽  
Dinesh Kumar ◽  
...  

Graphical AbstractMechanism of VOA and VIN to inhibit fatty acid synthesis in DMBA-induced mammary gland carcinoma of albino Wistar rats. Hypoxia-activated HIF-1α enhances lactate acidosis in the tumor microenvironment, and dysregulated pH in the tumor microenvironment activates SREBP-1c and FASN expression to speed up the fatty acid synthesis required for plasma membrane synthesis in rapidly proliferating cells. VOA- and VIN-activated PHD-2 enhanced the proteolytic degradation of HIF, thus inhibiting fatty acid synthesis. HIF-1α, hypoxia-inducible factor-1α; SREBP-1c, sterol regulatory element-binding protein-1c; FASN, fatty acid synthesis; PHD-2, prolyl hydroxylase-2.


Sign in / Sign up

Export Citation Format

Share Document