biological pretreatment
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 63)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
pp. 161-177
Author(s):  
Sehanat Prasongsuk ◽  
Wichanee Bankeeree ◽  
Pongtharin Lotrakul ◽  
Suraini Abd‐Aziz ◽  
Hunsa Punnapayak

2022 ◽  
pp. 101-114
Author(s):  
Aishiki Banerjee ◽  
Binoy Kumar Show ◽  
Shibani Chaudhury ◽  
S. Balachandran

2021 ◽  
Vol 16 ◽  
pp. 100849
Author(s):  
Daniel David Durán-Aranguren ◽  
Juan Pablo Meléndez-Melo ◽  
María Camila Covo-Ospina ◽  
Joaquín Díaz-Rendón ◽  
Deibyd Nicolás Reyes-Gutiérrez ◽  
...  

2021 ◽  
Author(s):  
◽  
Dinary Durán Sequeda

The main objective of this study was to determine the influence of the composition of the culture medium and lignocellulosic compounds on the secretion of laccase enzymes by P. ostreatus in submerged cultures. These studies were done using a statistical and systematic approach that allowed the control of the culture media composition. The optimal nutritional conditions were found that simultaneously increased fungal growth and laccase activity in the absence and presence of copper sulfate, a recognized inducer of laccase. Under these conditions, the biochemical aspects of transcripts in P. ostreatus related to laccase secretion were evaluated , which revealed the participation of membrane transporters with high affinity for copper (CTRs) as intermediate candidates for the regulation of three laccase genes, lacc2, lacc6, and lacc10. Moreover, the evaluation of the results of the culture media composition suggests that the regulation of these transporters is closely linked to sufficient nutritional conditions in carbon and nitrogen, with central participation of the metabolism of organic nitrogen in this process. With these findings, it was possible to obtain more profound knowledge of the pretreatment of lignocellulosic biomass by P. ostreatus in a submerged culture that was oriented to determine the role of laccase activity in the biological pretreatment of rice husks.


2021 ◽  
Vol 7 (10) ◽  
pp. 853
Author(s):  
Ariyah Terasawat ◽  
Sivawan Phoolphundh

The utilization of rice straw for biofuel production is limited by its composition. The pretreatment process is required to improve the enzymatic accessibility of polysaccharides in the biomass prior to enzymatic saccharification. In this study, simultaneous biological pretreatment and saccharification (SPS) of rice straw starting from laccase production by Panus neostrigosus I9 was operated in a 2-L fermenter. It was found that fungal physiology was strongly influenced by the agitation, and that the highest laccase production was obtained at an agitation speed of 750 rpm (209.96 ± 0.34 U/L). The dilution rate of 0.05 h−1 was set in continuous fermentation which resulted in laccase activity of 678.49 ± 20.39 U/L, approximately three times higher than that in batch culture. Response surface methodology (RSM) was applied to achieve the condition for maximum percentage of delignification. The maximum percentage of delignification of 45.55% was accomplished after pretreatment of rice straw with laccase enzyme 39.40 U/g rice straw at 43.70 °C for 11.19 h. Reducing sugar of 3.85 ± 0.15 g/L was obtained from the digested rice straw in a SPS reactor, while non-pretreated rice straw gave only 1.13 ± 0.10 g/L within 12 h of incubation. The results indicated that simultaneous biological pretreatment and saccharification (SPS) of rice straw by laccase helped to improve the accessibility of cellulose by cellulolytic enzymes.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yanwen Wu ◽  
Haipeng Guo ◽  
Md. Shafiqur Rahman ◽  
Xuantong Chen ◽  
Jinchi Zhang ◽  
...  

AbstractThe biological pretreatment for the enzymatic hydrolysis of lignocellulosic biomasses depends exclusively on the effective pretreatment process. Herein, we report a significant enhancement of enzymatic saccharification obtained with corn stover using a bacterial strain Bacillus sp. P3. The hemicellulose removal from corn stover by the strain Bacillus sp. P3 was evaluated for enhancing subsequent enzymatic hydrolysis. Therefore, our study revealed that an alkaline-resistant xylanase as well as other enzymes produced by Bacillus sp. P3 in fermentation broth led to a substantially enhanced hemicellulose removal rate from corn stover within pH 9.36–9.68. However, after a 20-day pretreatment of corn stover by the strain P3, the glucan content was increased by 51% and the xylan content was decreased by 35%. After 72 h of saccharification using 20 U/g of commercial cellulase, the yield of reducing sugar released from 20-day pretreated corn stover was increased by 56% in comparison to the untreated corn stover. Therefore, the use of the strain P3 could be a promising approach to pretreat corn stover for enhancing the enzymatic hydrolysis process of industrial bioenergy productions.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2971
Author(s):  
Mohd Nor Faiz Norrrahim ◽  
Muhammad Roslim Muhammad Huzaifah ◽  
Mohammed Abdillah Ahmad Farid ◽  
Siti Shazra Shazleen ◽  
Muhammad Syukri Mohamad Misenan ◽  
...  

The utilization of lignocellulosic biomass in various applications has a promising potential as advanced technology progresses due to its renowned advantages as cheap and abundant feedstock. The main drawback in the utilization of this type of biomass is the essential requirement for the pretreatment process. The most common pretreatment process applied is chemical pretreatment. However, it is a non-eco-friendly process. Therefore, this review aims to bring into light several greener pretreatment processes as an alternative approach for the current chemical pretreatment. The main processes for each physical and biological pretreatment process are reviewed and highlighted. Additionally, recent advances in the effect of different non-chemical pretreatment approaches for the natural fibres are also critically discussed with a focus on bioproducts conversion.


Sign in / Sign up

Export Citation Format

Share Document