transcription regulation
Recently Published Documents


TOTAL DOCUMENTS

543
(FIVE YEARS 100)

H-INDEX

62
(FIVE YEARS 7)

FEBS Journal ◽  
2021 ◽  
Author(s):  
Permkun Permsirivisarn ◽  
Anan Yuenyao ◽  
Nuttawan Pramanpol ◽  
Ratana Charoenwattanasatien ◽  
Wipa Suginta ◽  
...  

2021 ◽  
Author(s):  
Yuncong Geng ◽  
Christopher Herrick Bohrer ◽  
Nicolás Yehya ◽  
Hunter Hendrix ◽  
Lior Shachaf ◽  
...  

In Escherichia coli, translocation of RNA polymerase (RNAP) during transcription introduces supercoiling to DNA, which influences the initiation and elongation behaviors of RNAP. To quantify the role of supercoiling in transcription regulation, we develop a spatially resolved supercoiling model of transcription, describing RNAP-supercoiling interactions, topoisomerase activities, stochastic topological domain formation, and supercoiling diffusion in all transcription stages. This model establishes that transcription-induced supercoiling mediates the cooperation of co-transcribing RNAP molecules in highly expressed genes. It reveals that supercoiling transmits RNAP-accessible information through DNA and enables different RNAP molecules to communicate within and between genes. It thus predicts that a topological domain could serve as a transcription regulator, generating substantial transcription bursting and coordinating communications between adjacent genes in the domain. The model provides a quantitative platform for further theoretical and experimental investigations of how genome organization impacts transcription.


Author(s):  
Miguel Vazquez ◽  
Martin Krallinger ◽  
Florian Leitner ◽  
Martin Kuiper ◽  
Alfonso Valencia ◽  
...  

2021 ◽  
Vol 118 (47) ◽  
pp. e2109026118
Author(s):  
Adrien Chauvier ◽  
Pujan Ajmera ◽  
Rajeev Yadav ◽  
Nils G. Walter

Cotranscriptional RNA folding is widely assumed to influence the timely control of gene expression, but our understanding remains limited. In bacteria, the fluoride (F−)-sensing riboswitch is a transcriptional control element essential to defend against toxic F− levels. Using this model riboswitch, we find that its ligand F− and essential bacterial transcription factor NusA compete to bind the cotranscriptionally folding RNA, opposing each other’s modulation of downstream pausing and termination by RNA polymerase. Single-molecule fluorescence assays probing active transcription elongation complexes discover that NusA unexpectedly binds highly reversibly, frequently interrogating the complex for emerging, cotranscriptionally folding RNA duplexes. NusA thus fine-tunes the transcription rate in dependence of the ligand-responsive higher-order structure of the riboswitch. At the high NusA concentrations found intracellularly, this dynamic modulation is expected to lead to adaptive bacterial transcription regulation with fast response times.


Science ◽  
2021 ◽  
Vol 374 (6569) ◽  
pp. 883-887
Author(s):  
Isaac Fianu ◽  
Ying Chen ◽  
Christian Dienemann ◽  
Olexandr Dybkov ◽  
Andreas Linden ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi6-vi6
Author(s):  
Tina Huang ◽  
Juan Wang ◽  
Ye Hu ◽  
Andrea Piunti ◽  
Elizabeth Bartom ◽  
...  

Abstract INTRODUCTION Pediatric high-grade gliomas (pHGGs), including glioblastoma multiforme (GBM) and diffuse intrinsic pontine glioma (DIPG), are highly morbid brain tumors. Up to 80% of DIPGs harbor a somatic missense mutation in genes encoding Histone H3. To investigate whether the H3K27M mutant protein is associated with distinct chromatin structure affecting transcription regulation, we generated the first high-resolution Hi-C and ATAC-Seq maps of pHGG cell lines, and integrated these with tissue and cell genomic data. METHODS We generated sequencing data from patient-derived cell lines (DIPG n=6, GBM n=3, normal n=2) and frozen tissue specimens (DIPG n=1, normal brainstem n=1). Analyses included cell line RNA-Seq, ChIP-Seq (H3K27ac, H3K27me3, H3K27M) and genome-wide chromatin conformation capture (Hi-C), as well as tissue ATAC-Seq. Publicly available pediatric glioma tissue ChIP-Seq data was integrated with cell data. CRISPR knock-down of target enhancer regions was performed. RESULTS We identified tumor-specific enhancers and regulatory networks for known oncogenes in DIPG and GBM. In DIPG, FOX, SOX, STAT and SMAD families were among top H3K27Ac enriched motifs. Significant differences in Topologically Associating Domains (TADs) and DNA looping were observed at OLIG2 and MYCN in H3K27M mutant DIPG, relative to wild-type GBM and normal cells. Pharmacologic treatment targeting H3K27Ac (BET and Bromodomain inhibition) altered these 3D structures. Functional analysis of differentially enriched enhancers in DIPG implicated SOX2, SUZ12, and TRIM24 as top activated upstream regulators. Distinct genomic structural variations leading to enhancer hijacking and gene co-amplification were identified at A2M, JAG2, and FLRT1. CONCLUSION We show genome structural variations enhancer-promoter interactions that impact gene expression in pHGG in the presence and absence of the H3K27M mutation. Our results imply that tridimensional genome alterations may play a critical role in the pHGG epigenetic landscape and thereby contribute to pediatric gliomagenesis. Further studies examining the impact of the alterations is therefore underway.


Sign in / Sign up

Export Citation Format

Share Document