preclinical models
Recently Published Documents


TOTAL DOCUMENTS

2355
(FIVE YEARS 949)

H-INDEX

73
(FIVE YEARS 16)

2022 ◽  
Vol 18 (1) ◽  
pp. e1010161
Author(s):  
César Muñoz-Fontela ◽  
Lina Widerspick ◽  
Randy A. Albrecht ◽  
Martin Beer ◽  
Miles W. Carroll ◽  
...  

The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.


Author(s):  
Xin Chen ◽  
Thomas Dong ◽  
Yuhui Hu ◽  
Frances C. Shaffo ◽  
Nandkishore R. Belur ◽  
...  

JCI Insight ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Alvaro A. Ordonez ◽  
Matthew F.L. Parker ◽  
Robert J. Miller ◽  
Donika Plyku ◽  
Camilo A. Ruiz-Bedoya ◽  
...  

Author(s):  
Erin M. Wolfe ◽  
Sydney A. Mathis ◽  
Steven A. Ovadia ◽  
Zubin J. Panthaki

Abstract Introduction Collagen and human amniotic membrane (hAM) are Food and Drug Administration (FDA)-approved biomaterials that can be used as nerve wraps or conduits for repair of peripheral nerve injuries. Both biomaterials have been shown to reduce scarring and fibrosis of injured peripheral nerves. However, comparative advantages and disadvantages have not been definitively shown in the literature. The purpose of this systematic review is to comprehensively evaluate the literature regarding the roles of hAM and collagen nerve wraps and conduits on peripheral nerve regeneration in preclinical models. Methods The MEDLINE database was queried using the PubMed search engine on July 7, 2019, with the following search strategy: (“amniotic membrane” OR “amnion”) OR (“collagen conduit” OR “nerve wrap”)] AND “nerve.” All resulting articles were screened by two independent reviewers. Nerve type, lesion type/injury model, repair type, treatment, and outcomes were assessed. Results Two hundred and fifty-eight articles were identified, and 44 studies remained after application of inclusion and exclusion criteria. Seventeen studies utilized hAM, whereas 27 studies utilized collagen wraps or conduits. Twenty-three (85%) of the collagen studies utilized conduits, and four (15%) utilized wraps. Six (35%) of the hAM studies utilized conduits and 11 (65%) utilized wraps. Two (9%) collagen studies involving a conduit and one (25%) involving a wrap demonstrated at least one significant improvement in outcomes compared with a control. While none of the hAM conduit studies showed significant improvements, eight (73%) of the studies investigating hAM wraps showed at least one significant improvement in outcomes. Conclusion The majority of studies reported positive outcomes, indicating that collagen and hAM nerve wraps and conduits both have the potential to enhance peripheral nerve regeneration. However, relatively few studies reported significant findings, except for studies evaluating hAM wraps. Preclinical models may help guide clinical practice regarding applications of these biomaterials in peripheral nerve repair.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Jeremy Hunt ◽  
Elizabeth J. Coulson ◽  
Rajendram Rajnarayanan ◽  
Henrik Oster ◽  
Aleksandar Videnovic ◽  
...  

AbstractThe use of animals as models of human physiology is, and has been for many years, an indispensable tool for understanding the mechanisms of human disease. In Parkinson’s disease, various mouse models form the cornerstone of these investigations. Early models were developed to reflect the traditional histological features and motor symptoms of Parkinson’s disease. However, it is important that models accurately encompass important facets of the disease to allow for comprehensive mechanistic understanding and translational significance. Circadian rhythm and sleep issues are tightly correlated to Parkinson’s disease, and often arise prior to the presentation of typical motor deficits. It is essential that models used to understand Parkinson’s disease reflect these dysfunctions in circadian rhythms and sleep, both to facilitate investigations into mechanistic interplay between sleep and disease, and to assist in the development of circadian rhythm-facing therapeutic treatments. This review describes the extent to which various genetically- and neurotoxically-induced murine models of Parkinson’s reflect the sleep and circadian abnormalities of Parkinson’s disease observed in the clinic.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Venugopal Gunda ◽  
Thiago C. Genaro-Mattos ◽  
Jyoti B. Kaushal ◽  
Ramakanth Chirravuri-Venkata ◽  
Gopalakrishnan Natarajan ◽  
...  

Pancreatic cancer (PC) is characterized by metabolic deregulations that often manifest as deviations in metabolite levels and aberrations in their corresponding metabolic genes across the clinical specimens and preclinical PC models. Cholesterol is one of the critical metabolites supporting PC, synthesized or acquired by PC cells. Nevertheless, the significance of the de novo cholesterol synthesis pathway has been controversial in PC, indicating the need to reassess this pathway in PC. We utilized preclinical models and clinical specimens of PC patients and cell lines and utilized mass spectrometry-based sterol analysis. Further, we also performed in silico analysis to corroborate the significance of de novo cholesterol synthesis pathway in PC. Our results demonstrated alteration in free sterol levels, including free cholesterol, across in vitro, in vivo, and clinical specimens of PC. Especially, our sterol analyses established consistent alterations in free cholesterol across the different PC models. Overall, this study demonstrates the significance and consistency in deviation of cholesterol synthesis pathway in PC while showing the aberrations in sterol metabolite intermediates and the related genes using preclinical models, in silico platforms, and the clinical specimens.


2022 ◽  
Vol 23 (2) ◽  
pp. 590
Author(s):  
Ambra Costa ◽  
Rodolfo Quarto ◽  
Sveva Bollini

Since the first evidence that stem cells can provide pro-resolving effects via paracrine secretion of soluble factors, growing interest has been addressed to define the most ideal cell source for clinical translation. Leftover or clinical waste samples of human amniotic fluid obtained following prenatal screening, clinical intervention, or during scheduled caesarean section (C-section) delivery at term have been recently considered an appealing source of mesenchymal progenitors with peculiar regenerative capacity. Human amniotic fluid stem cells (hAFSC) have been demonstrated to support tissue recovery in several preclinical models of disease by exerting paracrine proliferative, anti-inflammatory and regenerative influence. Small extracellular vesicles (EVs) concentrated from the hAFSC secretome (the total soluble trophic factors secreted in the cell-conditioned medium, hAFSC-CM) recapitulate most of the beneficial cell effects. Independent studies in preclinical models of either adult disorders or severe diseases in newborns have suggested a regenerative role of hAFSC-EVs. EVs can be eventually concentrated from amniotic fluid (hAF) to offer useful prenatal information, as recently suggested. In this review, we focus on the most significant aspects of EVs obtained from either hAFSC and hAF and consider the current challenges for their clinical translation, including isolation, characterization and quantification methods.


2022 ◽  
Author(s):  
Justin Charles Strickland ◽  
William Stoops ◽  
Matthew > Banks ◽  
Cassandra D. Gipson-Reichardt

Substance use disorders (SUDs) are heterogenous and complex, making the development of translationally predictive rodent and non-human primate models to uncover their neurobehavioral underpinnings difficult. Neuroscience-focused outcomes have become highly prevalent, and with this, the notion that SUDs are disorders of the brain embraced as a dominant theoretical orientation to understand SUD etiology and treatment. These efforts, however, have led to few efficacious pharmacotherapies, and in some cases (as with cocaine or methamphetamine), no pharmacotherapies have translated from preclinical models for clinical use. In this review and theoretical commentary, we first describe the development of animal models of SUDs from a historical perspective. We then define and discuss three logical fallacies including 1) circular explanation, 2) affirming the consequent, and 3) reification that can apply to developed models. We then provide three case examples in which conceptual or logical issues exist in common methods (i.e., behavioral economic demand, escalation, and reinstatement). Alternative strategies to refocus behavioral models are suggested for the field in an attempt to better bridge the translational divide between animal models and the clinical condition of SUDs.


2022 ◽  
Author(s):  
Michael T. Meister ◽  
Marian J. A. Groot Koerkamp ◽  
Terezinha de Souza ◽  
Willemijn B. Breunis ◽  
Ewa Frazer-Mendelewska ◽  
...  

Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models. Here we describe the generation of a collection of pediatric RMS tumor organoid (tumoroid) models comprising all major subtypes. For aggressive tumors, tumoroid models can often be established within four to eight weeks, indicating the feasibility of personalized drug screening. Molecular, genetic and histological characterization show that the models closely resemble the original tumors, with genetic stability over extended culture periods of up to six months. Importantly, drug screening reflects established sensitivities and the models can be modified by CRISPR/Cas9 with TP53 knockout in an embryonal RMS model resulting in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be used to generate organoid models, relevant for a variety of preclinical and clinical research questions.


2022 ◽  
Vol 43 ◽  
pp. 1-3
Author(s):  
A Vernengo ◽  
◽  
Z Li ◽  
S Grad

The intervertebral disc (IVD) has long been known as a mechanical structure responsible for spinal flexibility and load distribution, while its dysfunction is a frequent source of pain and disability. In recent years, multiple signaling pathways contributing to the regulation of the IVD homeostasis in health and disease have been discovered. At the same time, crosstalk of the IVD with adjacent tissues, immune cells, nerve cells and systemic mediators has been identified as an essential mechanism of degeneration and repair. Such discoveries open the door for the design of new therapeutic and diagnostic targets. This Disc Biology Special Issue provides an abstract of cutting-edge findings in terms of tissue regulation, therapeutic intervention and preclinical models, which will help to improve the management of IVD disorders.


Sign in / Sign up

Export Citation Format

Share Document