annual streamflow
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 45)

H-INDEX

25
(FIVE YEARS 6)

Author(s):  
Christine Lucas ◽  
Isabella Aguilera-Betti ◽  
Ariel A Muñoz ◽  
Paulina Puchi ◽  
Gonzalo Sapriza ◽  
...  

Regional teleconnections permit cross-continental modeling of hydroclimate throughout the world. Tree-rings are a good hydroclimatic proxy used to reconstruct drought and streamflow in regions that respond to common global forcings. We used a multi-species dataset of 32 tree-ring width chronologies from Chile and Uruguay as a climate proxy to infer annual streamflow (Q) variability in the Negro River basin, a grassland-dominated watershed of lowland Southeastern South America. A positive linear correlation between tree-ring chronologies from Central Chile and annual Negro River instrumental streamflow from 1957 to 2012 indicated a cross-continental teleconnection between hydroclimate variability in Central Chile and Northeastern Uruguay. This relationship was mediated in part by the El Niño Southern Oscillation (ENSO), whereby the El Nino 3.4 Index was positively correlated with regional rainfall, annual tree growth, and Q anomalies. Despite the proximity of Uruguayan tree-ring chronologies to Negro River hydrometric stations, the Chilean tree-ring chronologies best predicted annual streamflow. Thus, using tree-ring data from four long-term moisture-sensitive chronologies of the species Cryptocarya alba in Central Chile (32–34°S), we present the first streamflow reconstruction (1890–2009) in the lower La Plata Basin. The reconstruction supports regional evidence for increasing frequency of extreme flood years over the past century in Uruguay. We demonstrate how climate teleconnections that mediate local hydroclimate variability permit the cross-continental reconstruction of streamflow, filling a major geographical gap in historical proxies for flooding and drought in grassland biomes of the southern hemisphere.


Hydrology ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Giuseppe Formetta ◽  
Glenn Tootle ◽  
Giacomo Bertoldi

The Adige River Basin (ARB) provides a vital water supply source for varying demands including agriculture (wine production), energy (hydropower) and municipal water supply. Given the importance of this river system, information about past (paleo) drought and pluvial (wet) periods would quantity risk to water managers and planners. Annual streamflow data were obtained for four gauges that were spatially located within the upper ARB. The Old World Drought Atlas (OWDA) provides an annual June–July–August (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) derived from 106 tree-ring chronologies for 5414 grid points across Europe from 0 to 2012 AD. In lieu of tree-ring chronologies, the OWDA dataset was used as a proxy to reconstruct both individual gauge and ARB regional streamflow from 0 to 2012. Principal component analysis (PCA) was applied to the four ARB streamflow gauges to generate one representative vector of regional streamflow. This regional streamflow vector was highly correlated with the four individual gauges, as coefficient of determination (R2) values ranged from 85% to 96%. Prescreening methods included correlating annual streamflow and scPDSI cells (within a 450 km radius) in which significant (p ≤ 0.01 or 99% significance) scPDSI cells were identified. The significant scPDSI cells were then evaluated for temporal stability to ensure practical and reliable reconstructions. Statistically significant and temporally stable scPDSI cells were used as predictors (independent variables) to reconstruct streamflow (predictand or dependent variable) for both individual gauges and at the regional scale. This resulted in highly skillful reconstructions of upper ARB streamflow from 0 to 2012 AD. Multiple drought and pluvial periods were identified in the paleo record that exceed those observed in the recent, historic record. Moreover, this study concurred with streamflow reconstructions in nearby European watersheds.


2021 ◽  
Author(s):  
Xiongpeng Tang ◽  
Guobin Fu ◽  
Silong Zhang ◽  
Chao Gao ◽  
Guoqing Wang ◽  
...  

Abstract. Hydrological simulations are a main method of quantifying the contribution rate (CR) of climate change (CC) and human activities (HAs) to watershed streamflow changes. However, the uncertainty of hydrological simulations is rarely considered in current research. To fill this research gap, based on the Soil and Water Assessment Tool (SWAT) model, in this study, we propose a new framework to quantify the contribution rate of climate change and human activities based on the posterior histogram distribution of hydrological simulations. In our new quantitative framework, the uncertainty of hydrological simulations is first considered to avoid the phenomenon of "equifinality for different parameters", which is common in hydrological simulations. The Lancang River (LR) Basin in China, which has been greatly affected by human activities in the past two decades, is then selected as the study area. The global gridded monthly sectoral water use data set (GMSWU), coupled with the dead capacity data of the large reservoirs within the LR basin and the Budyko hypothesis framework, are used to compare the calculation result of the novel framework. The results show that (1) the annual streamflow at Yunjinghong station in the Lancang River Basin changed abruptly in 2005, which was mainly due to the construction of the Xiaowan hydropower station that started in October 2004. The annual streamflow and annual mean temperature time series from 1961 to 2015 in the LR Basin showed a significant decreasing and increasing trend at the α = 0.01 significance level, respectively. The annual precipitation showed an insignificant decreasing trend. (2) The results of quantitative analysis using the new framework showed that the reason for the decrease in the streamflow at Yunjinghong station was 42.6 % due to climate change, and the remaining 57.4 % was due to human activities, such as the construction of hydropower stations within the study area. (3) The comparison with the other two methods showed that the contribution rate of climate change calculated by the Budyko framework and the GMSWU data were 37.2 % and 42.5 %, respectively, and the errors of the calculations of the new framework proposed in this study were within 5 %. Therefore, the newly proposed framework, which considers the uncertainty of hydrological simulations, can accurately quantify the contribution rate of climate change and human activities to streamflow changes. (4) The quantitative results calculated by using the simulation results with the largest Nash-Sutcliffe efficiency coefficient (NSE) indicated that climate change was the dominant factor for streamflow reduction, which was in opposition to the calculation results of our new framework. In other words, our novel framework could effectively solve the calculation errors caused by the “equifinality for different parameters” of hydrological simulations. (5) The results of this case study also showed that the reduction in the streamflow in June and November was mainly caused by decreased precipitation and increased evapotranspiration, while the changes in the streamflow in other months were mainly due to human activities such as the regulation of the constructed reservoirs. In general, the novel quantitative framework that considers the uncertainty of hydrological simulations presented in this study has validated an efficient alternative for quantifying the contribution rate of climate change and human activities to streamflow changes.


Author(s):  
Carlos Eduardo Sousa Lima ◽  
Marx Vinicius Maciel da Silva ◽  
Cleiton Da Silva Silveira ◽  
Francisco Das Chagas Vasconcelos Junior

This work aims to analyze the variability of average annual streamflow time series of the SIN (Brazil) and create a projection model of future streamflow scenarios from 3 to 10 years using wavelet transform. The streamflow time series were used divided into two periods: 1931 to 2005 and 2006 to 2017, for calibration and verification, respectively. The annual series was standardized, and by the wavelet transform, it was decomposed into two bands plus the residue for each Base Posts (BP) for later reconstruction. Then an autoregressive model per band and residue was made. The projection was obtained by adding the autoregressive models. For performance evaluation, a qualitative analysis of the cumulative probability distribution of the projected years and the likelihood were made. The model identified the probability distribution function of the projected years and obtained likelihood greater than 1 in most of the SIN regions, indicating that this methodology can capture the medium-range variability.


2021 ◽  
Vol 112 ◽  
pp. 103600
Author(s):  
Roberto Avelino Cecílio ◽  
Cristiane Júlio Gonçalves ◽  
Sidney Sara Zanetti ◽  
Marcel Carvalho Abreu ◽  
Laura Thebit de Almeida

Author(s):  
Jéssica Assaid Martins Rodrigues ◽  
Marcelo Ribeiro Viola ◽  
Carlos Rogério de Mello ◽  
Marco Antônio Vieira Morais

The Brazilian Cerrado biome is the largest and richest tropical savanna in the world and is among the 25 biodiversity hotspots identified worldwide. However, the lack of adequate hydrological monitoring in this region has led to problems in the management of water resources. In order to provide tools for the adequate management of water resources in the Brazilian Cerrado biome region, this paper develops the regionalization of maximum, mean and minimum streamflows in the Tocantins River Basin (287,405.5 km2), fully located in the Brazilian Cerrado biome. The streamflow records of 32 gauging stations in the Tocantins River Basin are examined using the Mann-Kendall test and the hydrological homogeneity non-parametric index-flood method. One homogeneous region was identified for the estimate of the streamflows Qltm (long-term mean streamflow), Q90% (streamflow with 90% of exceeding time), Q95% (streamflow with 95% of exceeding time) and Q7,10 (minimum annual streamflow over 7 days and return period of 10 years). Two homogeneous regions were identified for maximum annual streamflow estimation and the Generalized Extreme Value distribution is found to describe the distribution of maximus events appropriately within the both regions. Regional models were developed for each streamflow of each region and evaluated by cross-validation. These models can be used for the estimation of maximum, mean and minimum streamflows in ungauged basins within the Tocantins River Basin within the area boundaries identified. Therefore, the results provided in this paper are valuable tools for practicing water-resource managers in the Brazilian Cerrado biome. Keywords: l-moments, statistical hydrology, water use rights concessions.


2021 ◽  
pp. 1-47
Author(s):  
Connie A. Woodhouse ◽  
Bradley Udall

AbstractThe major tributary of the Lower Colorado River, the Gila River, is a critical source of water for human and natural environments in the Southwestern US. Warmer and drier than the Upper Colorado River basin (UCRB), with less snow, and a bi-modal precipitation regime, the Gila River is controlled by a set of climatic conditions that is different from the controls on Upper Colorado River flow. Unlike the Colorado River at Lees Ferry, the Upper Gila River and major Gila River tributaries, the Salt and Verde Rivers, do not yet reflect significant declines in annual streamflow, in spite of warming trends. Annual streamflow is dominated by cool season precipitation, but the monsoon influence is discernable as well, variable across the basin and complicated by an inverse relationship with cool season precipitation in the Salt and Verde River basins. Major multi-year streamflow droughts in these two basins have frequently been accompanied by wet monsoons, suggesting that monsoon precipitation may partially offset the impacts of a dry cool season. While statistically significant trends in annual streamflow are not evident, decreases in fall and spring streamflow reflect warming temperatures and some decreases in spring precipitation. Because climatic controls vary with topography and the influence of the monsoon, the impacts of warming on streamflow in the three sub-basins is somewhat variable. However, given relationships between climate and streamflow, current trends in hydroclimate, and projections for the future, it would be prudent to expect declines in Gila River water supplies in the coming decades.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3114
Author(s):  
George Z. Ndhlovu ◽  
Yali E. Woyessa

The Zambezi River basin is the fourth largest basin in Africa and the largest in southern Africa, comprising 5% of the total area of the continent. The basin is extremely vulnerable to climate change effects due to its highly variable climate. The purpose of this study was to evaluate the impact of climate change on streamflow in one of the sub-basins, the Kabombo basin. The multi- global climate model projections were used as input to the Soil Water Assessment Tool (SWAT) hydrological model for simulation of streamflow under RCP 4.5 and RCP 8.5 climate scenarios. The model predicted an annual streamflow increase of 85% and 6% for high uncertainty and strong consensus, respectively, under RCP 8.5. The model predicted a slightly reduced annual streamflow of less than 3% under RCP 4.5. The majority of simulations indicated that intra-annual and inter-annual streamflow variability will increase in the future for RCP 8.5 while it will reduce for the RCP 4.5 scenario. The predicted high and moderate rise in streamflow for RCP 8.5 suggests the need for adaptation plans and mitigation strategies. In contrast, the streamflow predicted for RCP 4.5 indicates that there may be a need to review the current management strategies of the water resources in the basin.


2021 ◽  
Vol 25 (10) ◽  
pp. 5589-5601
Author(s):  
Daniele Masseroni ◽  
Stefania Camici ◽  
Alessio Cislaghi ◽  
Giorgio Vacchiano ◽  
Christian Massari ◽  
...  

Abstract. Determining the spatiotemporal variability in the annual streamflow volume plays a relevant role in hydrology with regard to improving and implementing sustainable and resilient policies and practices of water resource management. This study investigates annual streamflow volume trends in a newly assembled, consolidated, and validated data set of daily mean river flow records from more than 3000 stations which cover near-natural basins in more than 40 countries across Europe. Although the data set contains streamflow time series from 1900 to 2013 in some stations, the statistical analyses were carried out by including observations from 1950 to 2013 in order to have a consistent and reliable data set over the continent. Trends were detected by calculating the slope of the Theil–Sen line over the annual anomalies of streamflow volume. The results show that annual streamflow volume trends have emerged at European scale, with a marked negative tendency in Mediterranean regions, with about -1×103 m3/(km2 yr−2), and a generally positive trend in northern ones, with about 0.5×103 m3/(km−2 yr−2). The annual streamflow volume trend patterns appear to be in agreement with the continental-scale meteorological observations in response to climate change drivers. In the Mediterranean area, the decline of annual streamflow volumes started in 1965, and since the early 1980s, volumes have consistently been lower than the 1950–2013 average. The spatiotemporal annual streamflow volume patterns observed in this work can help to contextualize short-term trends and regional studies already available in the scientific literature, as well as to provide a valid benchmark for further accurate quantitative analysis of annual streamflow volumes.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2892
Author(s):  
Zhibo Xie ◽  
Xingmin Mu ◽  
Peng Gao ◽  
Changxue Wu ◽  
Dexun Qiu

Quantitatively assessing the characteristics of river streamflow variation and conducting research on attribution identification are the basis for formulating climate-change response strategies and rational use of water resources. Based on the daily streamflow data of the Zhuangtou Hydrological Station in 1970–2018, this paper analyzes the streamflow changes in the Beiluo River Basin and studies the impact of climate change and anthropogenic activities on the streamflow in this basin. A non-parametric Mann–Kendall test and Pettitt’s test were used to determine the trend and detect abrupt changes of streamflow and baseflow. The method based on precipitation and potential evapotranspiration, as well as the double-mass curve of precipitation–streamflow, was established to evaluate the impact of climate change and non-climate factors on annual streamflow. The results reveal a statistically significant downward trend (p = 0.01) in both annual streamflow and baseflow, with the abrupt point year in 1994 and 1988, respectively. When comparing to a modest declining trend in annual average precipitation, we see that the temperature showed a significant upward trend (p = 0.01), whose abrupt point year was 1996. Under the policy of returning farmland to forest, land-use analysis shows that the area of farmland had decreased by 222.4 km2, of which 31.4% was mainly converted into the forestland. By the end of 2015, the area of forestland had increased by 123.4 km2, which has largely caused streamflow decrease. For the method based on precipitation and potential evapotranspiration, climate change contributed 43.7% of the annual streamflow change, and human activities (mainly refers to LUCC) contributed 56.3%. For the DMC of precipitation–streamflow, the precipitation contributed 9.4%, and non-precipitation factors (mainly refers to human activities) contributed 90.6%, and human activities played a more vital part in driving streamflow reduction in different decades, with a contribution rate of more than 70%. This study is of great practical significance to the planning, management, development and utilization of water resources in basins.


Sign in / Sign up

Export Citation Format

Share Document