inertial motion
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 70)

H-INDEX

23
(FIVE YEARS 5)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 563
Author(s):  
Lynn Zhu ◽  
Patrick Boissy ◽  
Christian Duval ◽  
Guangyong Zou ◽  
Mandar Jog ◽  
...  

Wearable global position system (GPS) technology can help those working with older populations and people living with movement disorders monitor and maintain their mobility level. Health research using GPS often employs inconsistent recording lengths due to the lack of a standard minimum GPS recording length for a clinical context. Our work aimed to recommend a GPS recording length for an older clinical population. Over 14 days, 70 older adults with Parkinson’s disease wore the wireless inertial motion unit with GPS (WIMU-GPS) during waking hours to capture daily “time outside”, “trip count”, “hotspots count” and “area size travelled”. The longest recording length accounting for weekend and weekdays was ≥7 days of ≥800 daily minutes of data (14 participants with 156, 483.9 min recorded). We compared the error rate generated when using data based on recording lengths shorter than this sample. The smallest percentage errors were observed across all outcomes, except “hotspots count”, with daily recordings ≥500 min (8.3 h). Eight recording days will capture mobility variability throughout days of the week. This study adds empirical evidence to the sensor literature on the required minimum duration of GPS recording.


Author(s):  
Vicent Girbés-Juan ◽  
Vinicius Schettino ◽  
Luis Gracia ◽  
J. Ernesto Solanes ◽  
Yiannis Demiris ◽  
...  

AbstractHigh dexterity is required in tasks in which there is contact between objects, such as surface conditioning (wiping, polishing, scuffing, sanding, etc.), specially when the location of the objects involved is unknown or highly inaccurate because they are moving, like a car body in automotive industry lines. These applications require the human adaptability and the robot accuracy. However, sharing the same workspace is not possible in most cases due to safety issues. Hence, a multi-modal teleoperation system combining haptics and an inertial motion capture system is introduced in this work. The human operator gets the sense of touch thanks to haptic feedback, whereas using the motion capture device allows more naturalistic movements. Visual feedback assistance is also introduced to enhance immersion. A Baxter dual-arm robot is used to offer more flexibility and manoeuvrability, allowing to perform two independent operations simultaneously. Several tests have been carried out to assess the proposed system. As it is shown by the experimental results, the task duration is reduced and the overall performance improves thanks to the proposed teleoperation method.


2022 ◽  
Vol 14 (2) ◽  
pp. 97-102
Author(s):  
Mikhail Podrigalo ◽  
◽  
Andriy Kashkanov ◽  
Mykhailo Kholodov ◽  
Andriy Poberezhnyi ◽  
...  

The term "inertioid" and its first design in 1936 was invented by engineer V. N. Tolchin. Despite the demonstration of unsupported motion using a physical model, the mystery of the inertioid has existed for almost a century. There are several theories explaining the motion of the inertioid (or mechanisms with inertial motion). These theories include the theory of friction, which proves that the movement of the device occurs due to the difference between the coefficients of friction and the coefficients of rolling resistance in contact between the bottom of the machine and the road. In some works, to explain the physical nature of this phenomenon, it is often legitimate to use A. Einstein's theory of relativity from a scientific point of view. In our opinion, the approach to the study of the process of motion of the inertioid should be based on the theory of the gravitational field. In the theory of relativity, A. Einstein notes that rapidly moving frames of reference create their own gravitational fields. Rotating weights create their own potential fields, since they are affected by centripetal accelerations. When the field of rotating loads is imposed on the gravitational field of the earth, accelerations appear that cause the movement of an inertioid (machines with an inertial mover). In fact, we constantly encounter this kind of overlap of potential fields in our daily life. For example, the effect of latitude on the value of the free fall acceleration of a body above the earth's surface is explained by the imposition of the earth's gravitational field of the potential field of its rotation around its axis. In the paper an inertioid with an idealized engine, which creates a constant driving (traction) force directed towards the movement has been investigated. As a result of the study, the equations of the translational motion of a machine with an ideal inertial engine were obtained, an expression for calculating its maximum speed was determined, and the maximum required engine power for the movement of a machine with an ideal inertial engine was determined.


2022 ◽  
Vol 63 (1) ◽  
pp. 82
Author(s):  
Eun Jin Son ◽  
Ji Hyung Kim ◽  
Hye Eun Noh ◽  
Inon Kim ◽  
Joo Ae Lim ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chuan He ◽  
Xiaoquan Zhang ◽  
Yulong Gui ◽  
Yang Liu ◽  
Wei Zhang

Digital sports training based on digital video image processing promises to reduce the reliance on the experience of coaches in the table tennis training process and to achieve a more general physical education base. Based on this approach, this paper describes the specific forms of exercise content, movement characteristics, and skill levels in the table tennis framework and specifies the calculation methods of motion capture and movement characteristics suitable for table tennis. Meanwhile, to further improve the accuracy of the inertial motion capture system in restoring the position posture of the trainees, this paper improves the original inertial motion capture system from two aspects: contact judgment of both feet and correction of the position posture based on the contact position constraint. The simulation results show that the corrected human posture has good action smoothness. This paper first proposes a knowledge-based generic sports-assisted training framework based on generalizing the traditional sports training model. The framework contains four main modules: domain knowledge, trainees, sport evaluation, and controller. The domain knowledge module is a digital representation of the knowledge of the exercise content, improvement instructions, and skill indicators of the sport; the trainee module is the active response of the trainee to the exercise content and improvement instructions; the motion evaluation module uses motion capture technology to obtain the raw motion data of the trainee and further calculates the motion characteristics; the controller module proposes improvement instructions to the trainee or makes him/her practice new content based on the results of the motion evaluation. Based on the results of the motion evaluation, the controller module proposes improvement instructions or makes the trainee practice new content until the trainee achieves the desired goal.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7353
Author(s):  
Mohsen M. Diraneyya ◽  
JuHyeong Ryu ◽  
Eihab Abdel-Rahman ◽  
Carl T. Haas

Inertial Motion Capture (IMC) systems enable in situ studies of human motion free of the severe constraints imposed by Optical Motion Capture systems. Inverse dynamics can use those motions to estimate forces and moments developing within muscles and joints. We developed an inverse dynamic whole-body model that eliminates the usage of force plates (FPs) and uses motion patterns captured by an IMC system to predict the net forces and moments in 14 major joints. We validated the model by comparing its estimates of Ground Reaction Forces (GRFs) to the ground truth obtained from FPs and comparing predictions of the static model’s net joint moments to those predicted by 3D Static Strength Prediction Program (3DSSPP). The relative root-mean-square error (rRMSE) in the predicted GRF was 6% and the intraclass correlation of the peak values was 0.95, where both values were averaged over the subject population. The rRMSE of the differences between our model’s and 3DSSPP predictions of net L5/S1 and right and left shoulder joints moments were 9.5%, 3.3%, and 5.2%, respectively. We also compared the static and dynamic versions of the model and found that failing to account for body motions can underestimate net joint moments by 90% to 560% of the static estimates.


Sign in / Sign up

Export Citation Format

Share Document