Abstract
The introduction of a third component vehemently modifies the morphology and charge carrier dynamics in the blend of a donor-acceptor pair, thereby affecting the photovoltaic properties of organic solar cells (OSCs). Combining steady-state, impedance, and transient spectroscopic measurements, photovoltaic properties of 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (DIB SQ) incorporated additive-free PTB7:PC70BM OSCs are assessed. As observed from steady-state measurements, concomitant enhancement in open-circuit voltage and short-circuit current has caused 33% enhancement in power conversion efficiency with good reliablity and reproducibility. On introducing 25 wt.% SQ to the OSCs, VOC has increased from 0.74 to 0.80 V while JSC has improved from 11.3 to 13.9 mAcm-2 with an increment in exciton dissociation probability rate from 81.5% to 94.9%. However, the fill factor values show inconsistent marginal variations with SQ addition. Equivalent circuit modeling of bias-voltage dependent impedance spectra along with transient photovoltage measurements reveal an improvement in effective charge carrier lifetime for the SQ incorporated OSCs, in comparison to the binary device. The addition of SQ also ensures better charge transport and extraction, as evidenced from photo-CELIV and transient photocurrent analysis. Atomic force microscopic (AFM) images confirm effective tuning of the morphology of the active layer when SQ is introduced into the binary blend, favoring efficient charge dissociation and transport. The possible operation mechanism of SQ incorporated ternary OSCs is proposed based on photoluminescence and AFM measurements. Moreover, the un-encapsulated OSC with 25 wt.% SQ has retained 91% of the initial PCE, while for the binary device, the PCE has declined to ~ 75% of the initial value after 200 hours of continous 1 sun illumination from a white LED in ambient atmosphere.