electrode thickness
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 53)

H-INDEX

24
(FIVE YEARS 7)

Author(s):  
Toby Bond ◽  
Roby Gauthier ◽  
Ahmed Eldesoky ◽  
Jessie Harlow ◽  
Jeff R Dahn

Abstract Single-crystal LiNixMnyCozO2 (NMC) materials have recently garnered significant academic and commercial interest as they have been shown to provide exceptional long-term charge-discharge cycling stability in Li-ion cells. Understanding the degradation mechanisms occurring in conventional polycrystalline NMC materials in comparison to the more stable single-crystal equivalents has become a topic of significant interest. In this study, we demonstrate how multi-scale, in-situ computed tomography can be used to characterize important changes occurring in wound pouch cells containing polycrystalline or single-crystal NMC. These changes include cell-level phenomena (such as deformation of the jelly roll and electrolyte depletion) as well as electrode-scale phenomena (such as electrode thickness growth and electrode cracking). A set of twenty-one cells were scanned in total, consisting of three different electrodes: polycrystalline NMC622, single-crystal NMC811, and single-crystal NMC532. These studies were designed to characterize the effects of varying C-rate, depth of discharge, and duty cycle, so this work includes an analysis of these factors as they relate to physical changes taking place at the cell and electrode level.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Veton Haziri ◽  
Sereilakhena Phal ◽  
Jean-François Boily ◽  
Avni Berisha ◽  
Solomon Tesfalidet

Surface modification is a hot topic in electrochemistry and material sciences because it affects the way materials are used. In this paper, a method for covalently attaching carboxyphenyl (PhCOOH) groups to a gold electrode is presented. These groups were grafted onto the electrode surface electrochemically via reduction of aryldiazonium salt. The resulting grafted surface was characterized using cyclic voltammetry (CV) before and after the functionalization procedure to validate the presence of the grafted layer. The grafting of PhCOOH groups was confirmed by analyzing electrode thickness and composition by ellipsometry and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) calculations indicated that the grafted layers provide a stable platform and resolved, for the first time, their interactions with oxygen.


Author(s):  
Junseok Ma ◽  
Jin Young Choi ◽  
Seung-Won Oh ◽  
Wook-Sung Kim

Abstract A liquid-crystal (LC)-based floating electrode-free (FE-free) coplanar waveguide (CPW) phase shifter with an additional LC layer is demonstrated for the first time. An LC layer is overlain on the electrodes of the original model; this change increases the amount of electric flux that the proposed structure can confine in the tunable region, and thereby greatly increases the figure-of-merit (FoM) while maintaining the benefits of the simple coplanar structure. We simulated the variations in the phase shifter’s FoM, characteristic impedance, and driving voltage while sweeping the additional LC layer thickness up to 300 μm with each electrode condition at 28 GHz. In the case of electrode thickness variation, the FoM increased as electrode thickness increased, regardless of the presence of the additional LC layer. However, in the case of the signal electrode width variation, we obtained an opposite FoM tendency depending on the presence of the additional LC layer. This work shows the possibility of an efficient LC-based FE-free CPW phase shifter design for a given LC layer and electrode conditions.


Author(s):  
Yeyoung Ha ◽  
Andrew M. Colclasure ◽  
Stephen E. Trask ◽  
Shabbir Ahmed ◽  
Kevin Gering ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 63-69
Author(s):  
Belinda Liana Devy ◽  
Haryanto A. R.

Batik is one of Indonesia's original cultural heritage that must be preserved. However, the resulting liquid waste has a negative impact on the environment because it contains high levels of phosphate, surfactant, TSS, TDS, turbidity, BOD5 and COD contaminants. An effective method for dealing with batik waste is electrocoagulation, which is coagulation in the presence of an electric current using electrodes. This study treats batik waste by electrocoagulation using aluminum electrodes, which are operated at a current of 5 Ampere, electrode distance is 2 cm, electrode thickness is 0.1 cm, electrode cross-sectional area is 7x10 cm with a waste volume of 500 mL. The effect of potential difference treatment (3 volts, 4.5 volts, 7.5 volts, 9 volts, and 12 volts) and contact time (15 minutes, 20 minutes, 25 minutes, 30 minutes, and 35 minutes) on changes in COD and TSS levels were studied. Optimal conditions were obtained at a potential difference of 12 volts for 35 minutes with a COD reduction efficiency of 84.84% and 91% for TSS.


2021 ◽  
Vol 3 ◽  
Author(s):  
Franky E. Bedoya-Lora ◽  
Anna Hankin ◽  
Geoff H. Kelsall

Results have been reported previously of a model describing the performance of photoelectrochemical reactors, which utilize semiconductor | liquid junctions. This model was developed and verified using SnIV-doped α-Fe2O3 as photoanodes. Hematite films were fully characterized to obtain parameter inputs to a model predicting photocurrent densities. Thus, measured photocurrents were described and validated by the model in terms of measurable quantities. The complete reactor model, developed in COMSOL Multiphysics, accounted for gas evolution and desorption in the system. Hydrogen fluxes, charge yields and gas collection efficiencies in a photoelectrochemical reactor were estimated, revealing a critical need for geometric optimization to minimize H2-O2 product recombination as well as undesirable spatial distributions of current densities and “overpotentials” across the electrodes. Herein, the model was implemented in a 3D geometry and validated using solid and perforated 0.1 × 0.1 m2 planar photoanodes in an up-scaled photoelectrochemical reactor of 2 dm3. The same model was then applied to a set of simulated electrode geometries and electrode configurations to identify the electrode design that would maximize current densities and H2 fluxes. The electrode geometry was modified by introducing circular perforations of different sizes, relative separations and arrangements into an otherwise solid planar sheet for the purpose of providing ionic shortcuts. We report the simulated effects of electrode thickness and the presence or absence of a membrane to separate oxygen and hydrogen gases. In a reactor incorporating a membrane and a photoanode at 1.51 V vs RHE and pH 13.6, an optimized hydrogen flux was predicted for a perforation geometry with a separation-to-diameter ratio of 4.5 ± 0.5; the optimal perforation diameter was 50 µm. For reactors without a membrane, this ratio was 6.5 and 8.5 for a photoanode in a “wired” (monopolar) and “wireless” (photo-bipolar) design, respectively. The results and methodologies presented here will serve as a framework to optimize composite photoelectrodes (semiconductor | membrane | electrolyte), and photoelectrochemical reactors in general, for the production of hydrogen (and oxygen) from water using solar energy.


Sign in / Sign up

Export Citation Format

Share Document