spinocerebellar ataxias
Recently Published Documents


TOTAL DOCUMENTS

359
(FIVE YEARS 108)

H-INDEX

39
(FIVE YEARS 5)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 157
Author(s):  
Rocío Gómez ◽  
Yessica S. Tapia-Guerrero ◽  
Bulmaro Cisneros ◽  
Lorena Orozco ◽  
César Cerecedo-Zapata ◽  
...  

Spinocerebellar ataxias (SCAs) conform a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Five of the most frequent SCAs are caused by a CAG repeat expansion in the exons of specific genes. The SCAs incidence and the distribution of polymorphic CAG alleles vary among populations and ethnicities. Thus, characterization of the genetic architecture of ethnically diverse populations, which have undergone recent admixture and demographic events, could facilitate the identification of genetic risk factors. Owing to the great ethnic diversity of the Mexican population, this study aimed to analyze the allele frequencies of five SCA microsatellite loci (SCA1, SCA2, SCA3, SCA6, and SCA7) in eleven Mexican Native American (MNA) populations. Data from the literature were used to compare the allelic distribution of SCA loci with worldwide populations. The SCA loci allelic frequencies evidenced a certain genetic homogeneity in the MNA populations, except for Mayans, who exhibited distinctive genetic profiles. Neither pathological nor large normal alleles were found in MNA populations, except for the SCA2 pre-mutated allele in the Zapotec population. Collectively, our findings demonstrated the contribution of the MNA ancestry in shaping the genetic structure of contemporary Mexican Mestizo populations. Our results also suggest that Native American ancestry has no impact on the origin of SCAs in the Mexican population. Instead, the acquisition of pathological SCA alleles could be associated with European migration.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Joana R. Loureiro ◽  
Ana F. Castro ◽  
Ana S. Figueiredo ◽  
Isabel Silveira

The number of neurodegenerative diseases resulting from repeat expansion has increased extraordinarily in recent years. In several of these pathologies, the repeat can be transcribed in RNA from both DNA strands producing, at least, one toxic RNA repeat that causes neurodegeneration by a complex mechanism. Recently, seven diseases have been found caused by a novel intronic pentanucleotide repeat in distinct genes encoding proteins highly expressed in the cerebellum. These disorders are clinically heterogeneous being characterized by impaired motor function, resulting from ataxia or epilepsy. The role that apparently normal proteins from these mutant genes play in these pathologies is not known. However, recent advances in previously known spinocerebellar ataxias originated by abnormal non-coding pentanucleotide repeats point to a gain of a toxic function by the pathogenic repeat-containing RNA that abnormally forms nuclear foci with RNA-binding proteins. In cells, RNA foci have been shown to be formed by phase separation. Moreover, the field of repeat expansions has lately achieved an extraordinary progress with the discovery that RNA repeats, polyglutamine, and polyalanine proteins are crucial for the formation of nuclear membraneless organelles by phase separation, which is perturbed when they are expanded. This review will cover the amazing advances on repeat diseases.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
GustavoLeite Franklin ◽  
CarlosHenrique Ferreira Camargo ◽  
Daniel Balaban ◽  
JoãoMatheus Marcon ◽  
Salmo Raskin ◽  
...  

Author(s):  
Mirta Fuentes-Ramos ◽  
Eddy Sánchez-DelaCruz ◽  
Iván-Vladimir Meza-Ruiz ◽  
Cecilia-Irene Loeza-Mejía

Neurodegenerative diseases affect a large part of the population in the world and also in Mexico, deteriorating gradually the quality of patients’ life. Therefore, it is important to diagnose them with a high degree of reliability. In order to solve it, various computational methods have been applied in the analysis of biomarkers of human gait. In this study, we propose employing the automatic model selection and hyperparameter optimization method that has not been addressed before for this problem. Our results showed highly competitive percentages of correctly classified instances when discriminating binary and multiclass sets of neurodegenerative diseases: Parkinson’s disease, Huntington’s disease, and Spinocerebellar ataxias.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexander F. Brown ◽  
Michael H. Parkinson ◽  
Hector Garcia-Moreno ◽  
Ese Mudanohwo ◽  
Robyn Labrum ◽  
...  

Background: Patients with suspected genetic ataxia are often tested for Friedreich's ataxia (FRDA) and/or a variety of spinocerebellar ataxias (SCAs). FRDA can present with atypical, late-onset forms and so may be missed in the diagnostic process. We aimed to determine FRDA-positive subjects among two cohorts of patients referred to a specialist ataxia centre either for FRDA or SCA testing to determine the proportion of FRDA cases missed in the diagnostic screening process.Methods: 2000 SCA-negative ataxia patients, not previously referred for FRDA testing (group A), were tested for FRDA expansions and mutations. This group was compared with 1768 ataxia patients who had been previously referred for FRDA testing (group B) and were therefore more likely to have a typical presentation. The phenotypes of positive cases were assessed through review of the clinical case notes.Results: Three patients (0.2%) in group A had the FRDA expansion on both alleles, compared with 207 patients (11.7%) in group B. The heterozygous carrier rate across both cohorts was of 41 out of 3,768 cases (1.1%). The size of the expansions in the three FRDA-positive cases in group A was small, and their presentation atypical with late-onset.Conclusions: This study demonstrates that FRDA is very rare among patients who were referred purely for SCA testing without the clinical suspicion of FRDA. Such cases should be referred to specialist ataxia centres for more extensive testing to improve patient management and outcomes.


2021 ◽  
Author(s):  
Alyson Sujkowski ◽  
Kristin Richardson ◽  
Matthew V. Prifti ◽  
R. J. Wessells ◽  
Sokol V. Todi

AbstractEndurance exercise is a potent intervention with widespread benefits proven to reduce disease incidence and impact across species. While endurance exercise supports neural plasticity, enhanced memory, and reduced neurodegeneration, less is known about the effect of chronic exercise on the progression of movement disorders such as ataxias. Here, we focused on three different types of ataxias, Spinocerebellar Ataxias Type (SCAs) 2, 3, and 6, belonging to the polyglutamine (polyQ) family of neurodegenerative disorders. In Drosophila models of these SCAs, flies progressively lose motor function. Here, we observe marked protection of speed and endurance in exercised SCA2 flies and modest protection in exercised SCA6 models, while no benefit is observed in SCA3 flies. Causative protein levels are reduced in SCA2 flies after chronic exercise, but not in SCA3 models, linking protein levels to exercise-based benefits. Additional investigations indicate that the exercise-inducible protein, Sestrin (Sesn) suppresses mobility decline and improves early death in SCA2 flies, even without exercise, coincident with disease protein level reduction and increased autophagic flux. These improvements depend on previously established functions of Sesn that reduce oxidative damage and modulate mTOR activity. Our study suggests differential responses of polyQ SCAs to exercise, highlighting the potential for more extensive application of exercise-based therapies in the prevention of polyQ neurodegeneration. Defining the mechanisms by which endurance exercise suppresses polyQ SCAs will open the door for more effective treatment for these diseases.


2021 ◽  
pp. 2483-2559
Author(s):  
Franco Taroni ◽  
Luisa Chiapparini ◽  
Caterina Mariotti

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1754
Author(s):  
Joana Sofia Correia ◽  
Andreia Neves-Carvalho ◽  
Bárbara Mendes-Pinheiro ◽  
Joel Pires ◽  
Fábio Gabriel Teixeira ◽  
...  

The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies for neurodegenerative diseases, including spinocerebellar ataxias. Spinocerebellar ataxia type 3 (SCA3)—or Machado–Joseph disease (MJD)—is the most common dominant ataxia, being mainly characterized by motor deficits; however, SCA3/MJD has a complex and heterogeneous pathophysiology, involving many CNS brain regions, contributing to the lack of effective therapies. Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for CNS disorders. Beyond their differentiation potential, MSCs secrete a broad range of neuroregulatory factors that can promote relevant neuroprotective and immunomodulatory actions in different pathophysiological contexts. The objective of this work was to study the effects of (1) human MSC transplantation and (2) human MSC secretome (CM) administration on disease progression in vivo, using the CMVMJD135 mouse model of SCA3/MJD. Our results showed that a single CM administration was more beneficial than MSC transplantation—particularly in the cerebellum and basal ganglia—while no motor improvement was observed when these cell-based therapeutic approaches were applied in the spinal cord. However, the effects observed were mild and transient, suggesting that continuous or repeated administration would be needed, which should be further tested.


2021 ◽  
Vol 10 ◽  
Author(s):  
Robert Lalonde ◽  
Catherine Strazielle

: Various clinical results are obtained regarding the effects of cerebellar GABA transmission on spinocerebellar ataxias. Based on animal studies, it is proposed that balanced GABAergic transmission between GABA and other neurotransmitters such as glutamate may lead to more promising results in treating such conditions.


Sign in / Sign up

Export Citation Format

Share Document