independent manner
Recently Published Documents


TOTAL DOCUMENTS

3038
(FIVE YEARS 935)

H-INDEX

117
(FIVE YEARS 14)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Ellen C. Gingrich ◽  
Kendra Case ◽  
A. Denise R. Garcia

Abstract Background The molecular signaling pathway, Sonic hedgehog (Shh), is critical for the proper development of the central nervous system. The requirement for Shh signaling in neuronal and oligodendrocyte development in the developing embryo are well established. However, Shh activity is found in discrete subpopulations of astrocytes in the postnatal and adult brain. Whether Shh signaling plays a role in astrocyte development is not well understood. Methods Here, we use a genetic inducible fate mapping approach to mark and follow a population of glial progenitor cells expressing the Shh target gene, Gli1, in the neonatal and postnatal brain. Results In the neonatal brain, Gli1-expressing cells are found in the dorsolateral corner of the subventricular zone (SVZ), a germinal zone harboring astrocyte progenitor cells. Our data show that these cells give rise to half of the cortical astrocyte population, demonstrating their substantial contribution to the cellular composition of the cortex. Further, these data suggest that the cortex harbors astrocytes from different lineages. Gli1 lineage astrocytes are distributed across all cortical layers, positioning them for broad influence over cortical circuits. Finally, we show that Shh activity recurs in mature astrocytes in a lineage-independent manner, suggesting cell-type dependent roles of the pathway in driving astrocyte development and function. Conclusion These data identify a novel role for Shh signaling in cortical astrocyte development and support a growing body of evidence pointing to astrocyte heterogeneity.


2022 ◽  
Author(s):  
Heng-Wei Lee ◽  
Yi-Fan Jiang ◽  
Hui-Wen Chang ◽  
Ivan-Chen Cheng

Abstract Positive-stranded RNA viruses modify host organelles to form replication organelles (ROs) for their replication. Enteroviral 3A protein has been demonstrated to be highly associated with the COPI pathway, in which factors work on the ER-to-Golgi intermediate and the Golgi. However, Sar1, a COPII factor exerting coordinated action at endoplasmic reticulum (ER) exit sites, rather than COPI factors, is required for foot-and-mouth disease virus (FMDV) replication. Therefore, we thought that deep understanding of FMDV 3A was the key to explaining the differences and to unlocking the secret of FMDV RO formation. In this study, FMDV 3A was confirmed as a peripheral membrane protein capable of modifying the ER into vesicle-like structures, which were neither COPII vesicles nor autophagosomes. When the C-terminus of 3A was truncated, it would be located at the ER without vesicular modification. This change was revealed by mGFP and APEX2 fusion constructs observed by fluorescence microscopy and electron tomography, respectively. Referring to other 3A truncation, the minimal region for modification was aa 42–92. Furthermore, we found that the remodeling was related to two COPII factors, Sar1 and Sec12. Both interacted with 3A, but their binding domains on 3A were different. Finally, we hypothesized that the N-terminus of 3A would interact with Sar1 as its C-terminus simultaneously interacted with Sec12, which possibly would enhance Sar1 activation. On the ER membrane, two active Sar1 were connected by 3A with regions of aa 42–59 and aa 76–92, causing curvature of the membrane. This mechanism is distinct from the traditional COPII pathway and should be crucial for FMDV RO formation.


Gut ◽  
2022 ◽  
pp. gutjnl-2021-325109
Author(s):  
Jonas Nørskov Søndergaard ◽  
Christian Sommerauer ◽  
Ionut Atanasoai ◽  
Laura C Hinte ◽  
Keyi Geng ◽  
...  

ObjectiveTo better comprehend transcriptional phenotypes of cancer cells, we globally characterised RNA-binding proteins (RBPs) to identify altered RNAs, including long non-coding RNAs (lncRNAs).DesignTo unravel RBP-lncRNA interactions in cancer, we curated a list of ~2300 highly expressed RBPs in human cells, tested effects of RBPs and lncRNAs on patient survival in multiple cohorts, altered expression levels, integrated various sequencing, molecular and cell-based data.ResultsHigh expression of RBPs negatively affected patient survival in 21 cancer types, especially hepatocellular carcinoma (HCC). After knockdown of the top 10 upregulated RBPs and subsequent transcriptome analysis, we identified 88 differentially expressed lncRNAs, including 34 novel transcripts. CRISPRa-mediated overexpression of four lncRNAs had major effects on the HCC cell phenotype and transcriptome. Further investigation of four RBP-lncRNA pairs revealed involvement in distinct regulatory processes. The most noticeable RBP-lncRNA connection affected lipid metabolism, whereby the non-canonical RBP CCT3 regulated LINC00326 in a chaperonin-independent manner. Perturbation of the CCT3-LINC00326 regulatory network led to decreased lipid accumulation and increased lipid degradation in cellulo as well as diminished tumour growth in vivo.ConclusionsWe revealed that RBP gene expression is perturbed in HCC and identified that RBPs exerted additional functions beyond their tasks under normal physiological conditions, which can be stimulated or intensified via lncRNAs and affected tumour growth.


2022 ◽  
Vol 11 ◽  
Author(s):  
Ting Wen ◽  
Qiao Yi Chen

Canonical histone H3.1 and variant H3.3 deposit at different sites of the chromatin via distinct histone chaperones. Histone H3.1 relies on chaperone CAF-1 to mediate replication-dependent nucleosome assembly during S-phase, while H3.3 variant is regulated and incorporated into the chromatin in a replication-independent manner through HIRA and DAXX/ATRX. Current literature suggests that dysregulated expression of histone chaperones may be implicated in tumor progression. Notably, ectopic expression of CAF-1 can promote a switch between canonical H3.1 and H3 variants in the chromatin, impair the chromatic state, lead to chromosome instability, and impact gene transcription, potentially contributing to carcinogenesis. This review focuses on the chaperone proteins of H3.1 and H3.3, including structure, regulation, as well as their oncogenic and tumor suppressive functions in tumorigenesis.


2022 ◽  
Vol 23 (2) ◽  
pp. 743
Author(s):  
Kangkang Niu ◽  
Xiaojuan Zhang ◽  
Qisheng Song ◽  
Qili Feng

In eukaryotes, mRNAs translation is mainly mediated in a cap-dependent or cap-independent manner. The latter is primarily initiated at the internal ribosome entry site (IRES) in the 5′-UTR of mRNAs. It has been reported that the G-quadruplex structure (G4) in the IRES elements could regulate the IRES activity. We previously confirmed RBM4 (also known as LARK) as a G4-binding protein in human. In this study, to investigate whether RBM4 is involved in the regulation of the IRES activity by binding with the G4 structure within the IRES element, the IRES-A element in the 5′-UTR of vascular endothelial growth factor A (VEGFA) was constructed into a dicistronic reporter vector, psiCHECK2, and the effect of RBM4 on the IRES activity was tested in 293T cells. The results showed that the IRES insertion significantly increased the FLuc expression activity, indicating that this G4-containing IRES was active in 293T cells. When the G4 structure in the IRES was disrupted by base mutation, the IRES activity was significantly decreased. The IRES activity was notably increased when the cells were treated with G4 stabilizer PDS. EMSA results showed that RBM4 specifically bound the G4 structure in the IRES element. The knockdown of RBM4 substantially reduced the IRES activity, whereas over-expressing RBM4 increased the IRES activity. Taking all results together, we demonstrated that RBM4 promoted the mRNA translation of VEGFA gene by binding to the G4 structure in the IRES.


2022 ◽  
Vol 23 (2) ◽  
pp. 749
Author(s):  
Kazuya Sumi ◽  
Kenji Tago ◽  
Yosuke Nakazawa ◽  
Kyoko Takahashi ◽  
Tomoyuki Ohe ◽  
...  

In the treatment of breakpoint cluster region-Abelson (BCR-ABL)-positive chronic myeloid leukemia (CML) using BCR-ABL inhibitors, the appearance of a gatekeeper mutation (T315I) in BCR-ABL is a serious issue. Therefore, the development of novel drugs that overcome acquired resistance to BCR-ABL inhibitors by CML cells is required. We previously demonstrated that a bis-pyridinium fullerene derivative (BPF) induced apoptosis in human chronic myeloid leukemia (CML)-derived K562 cells partially through the generation of reactive oxygen species (ROS). We herein show that BPF enhanced the activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase (MEK-ERK) pathway in a ROS-independent manner. BPF-induced apoptosis was attenuated by trametinib, suggesting the functional involvement of the MEK-ERK pathway in apoptosis in K562 cells. In addition, the constitutive activation of the MEK-ERK pathway by the enforced expression of the BRAFV600E mutant significantly increased the sensitivity of K562 cells to BPF. These results confirmed for the first time that BPF induces apoptosis in K562 cells through dual pathways—ROS production and the activation of the MEK-ERK pathway. Furthermore, BPF induced cell death in transformed Ba/F3 cells expressing not only BCR-ABL but also T315I mutant through the activation of the MEK-ERK pathway. These results indicate that BPF is as an effective CML drug that overcomes resistance to BCR-ABL inhibitors.


2022 ◽  
Vol 119 (3) ◽  
pp. e2107111119
Author(s):  
Samantha L. Schwartz ◽  
Debayan Dey ◽  
Julia Tanquary ◽  
Camden R. Bair ◽  
Anice C. Lowen ◽  
...  

The 2’-5’-oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection. How these proteins are able to avoid aberrant activation by cellular RNAs is not fully understood, but adenosine-to-inosine (A-to-I) editing has been proposed to limit accumulation of endogenous RNAs that might otherwise cause stimulation of the OAS/RNase L pathway. Here, we aim to uncover whether and how such sequence modifications can restrict the ability of short, defined dsRNAs to activate the single-domain form of OAS, OAS1. Unexpectedly, we find that all tested inosine-containing dsRNAs have an increased capacity to activate OAS1, whether in a destabilizing (I•U) or standard Watson–Crick-like base pairing (I–C) context. Additional variants with strongly destabilizing A•C mismatches or stabilizing G–C pairs also exhibit increased capacity to activate OAS1, eliminating helical stability as a factor in the relative ability of the dsRNAs to activate OAS1. Using thermal difference spectra and molecular dynamics simulations, we identify both increased helical dynamics and specific local changes in helical structure as important factors in the capacity of short dsRNAs to activate OAS1. These helical features may facilitate more ready adoption of the distorted OAS1-bound conformation or stabilize important structures to predispose the dsRNA for optimal binding and activation of OAS1. These studies thus reveal the molecular basis for the greater capacity of some short dsRNAs to activate OAS1 in a sequence-independent manner.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Liyuan Wang ◽  
Chan Chen ◽  
Zemin Song ◽  
Honghong Wang ◽  
Minghui Ye ◽  
...  

AbstractEfforts to therapeutically target EZH2 have generally focused on inhibition of its methyltransferase activity, although it remains less clear whether this is the central mechanism whereby EZH2 promotes cancer. In the current study, we show that EZH2 directly interacts with both MYC family oncoproteins, MYC and MYCN, and promotes their stabilization in a methyltransferase-independent manner. By competing against the SCFFBW7 ubiquitin ligase to bind MYC and MYCN, EZH2 counteracts FBW7-mediated MYC(N) polyubiquitination and proteasomal degradation. Depletion, but not enzymatic inhibition, of EZH2 induces robust MYC(N) degradation and inhibits tumor cell growth in MYC(N) driven neuroblastoma and small cell lung carcinoma. Here, we demonstrate the MYC family proteins as global EZH2 oncogenic effectors and EZH2 pharmacologic degraders as potential MYC(N) targeted cancer therapeutics, pointing out that MYC(N) driven cancers may develop inherent resistance to the canonical EZH2 enzymatic inhibitors currently in clinical development.


Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 22
Author(s):  
Amira Abozaid ◽  
Robert Gerlai

Anxiety continues to represent a major unmet medical need. Despite the availability of numerous anxiolytic drugs, a large proportion of patients do not respond well to current pharmacotherapy, or their response diminishes with chronic drug application. To discover novel compounds and to investigate the mode of action of anxiolytic drugs, animal models have been proposed. The zebrafish is a novel animal model in this research. It is particularly appropriate, as it has evolutionarily conserved features, and drug administration can be employed in a non-invasive manner by immersing the fish into the drug solution. The first step in the analysis of anxiolytic drugs with zebrafish is to test reference compounds. Here, we investigate the effects of buspirone hydrochloride, an anxiolytic drug often employed in the human clinic. We utilize two genetically distinct populations of zebrafish, ABSK, derived from the quasi-inbred AB strain, and WT, a genetically heterogeneous wild-type population. We placed juvenile (10–13-day, post-fertilization, old) zebrafish singly in petri dishes containing one of four buspirone concentrations (0 mg/L control, 5 mg/L, 20 mg/L or 80 mg/L) for 1 h, with each fish receiving a single exposure to one concentration, a between subject experimental design. Subsequently, we recorded the behavior of the zebrafish for 30 min using video-tracking. Buspirone decreased distance moved, number of immobility episodes and thigmotaxis, and it increased immobility duration and turn angle in a quasi-linear dose dependent but genotype independent manner. Although it is unclear whether these changes represent anxiolysis in zebrafish, the results demonstrate that behavioral analysis of juvenile zebrafish may be a sensitive and simple way to quantify the effects of human anxiolytic drugs.


Sign in / Sign up

Export Citation Format

Share Document