gene dosage effect
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 14)

H-INDEX

34
(FIVE YEARS 2)

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2043
Author(s):  
Elena V. Evtushenko ◽  
Evgeny A. Elisafenko ◽  
Sima S. Gatzkaya ◽  
Veit Schubert ◽  
Andreas Houben ◽  
...  

Gene duplication and the preservation of both copies during evolution is an intriguing evolutionary phenomenon. Their preservation is related to the function they perform. The central component of centromere specification and function is the centromere-specific histone H3 (CENH3). Some cereal species (maize, rice) have one copy of the gene encoding this protein, while some (wheat, barley, rye) have two. Therefore, they represent a good model for a comparative study of the functional activity of the duplicated CENH3 genes and their protein products. We determined the organization of the CENH3 locus in rye (Secale cereale L.) and identified the functional motifs in the vicinity of the CENH3 genes. We compared the expression of these genes at different stages of plant development and the loading of their products, the CENH3 proteins, into nucleosomes during mitosis and meiosis. Using extended chromatin fibers, we revealed patterns of loading CENH3proteinsinto polynucleosomal domains in centromeric chromatin. Our results indicate no sign of neofunctionalization, subfunctionalization or specialization in the gene copies. The influence of negative selection on the coding part of the genes led them to preserve their conserved function. The advantage of having two functional genes appears as the gene-dosage effect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Youngjae Oh ◽  
Christopher R. Barbey ◽  
Saket Chandra ◽  
Jinhe Bai ◽  
Zhen Fan ◽  
...  

Strawberries produce numerous volatile compounds that contribute to the unique flavors of fruits. Among the many volatiles, γ-decalactone (γ-D) has the greatest contribution to the characteristic fruity aroma in strawberry fruit. The presence or absence of γ-D is controlled by a single locus, FaFAD1. However, this locus has not yet been systematically characterized in the octoploid strawberry genome. It has also been reported that the volatile content greatly varies among the strawberry varieties possessing FaFAD1, suggesting that another genetic factor could be responsible for the different levels of γ-D in fruit. In this study, we explored the genomic structure of FaFAD1 and determined the allele dosage of FaFAD1 that regulates variations of γ-D production in cultivated octoploid strawberry. The genome-wide association studies confirmed the major locus FaFAD1 that regulates the γ-D production in cultivated strawberry. With the hybrid capture-based next-generation sequencing analysis, a major presence–absence variation of FaFAD1 was discovered among γ-D producers and non-producers. To explore the genomic structure of FaFAD1 in the octoploid strawberry, three bacterial artificial chromosome (BAC) libraries were developed. A deletion of 8,262 bp was consistently found in the FaFAD1 region of γ-D non-producing varieties. With the newly developed InDel-based codominant marker genotyping, along with γ-D metabolite profiling data, we revealed the impact of gene dosage effect for the production of γ-D in the octoploid strawberry varieties. Altogether, this study provides systematic information of the prominent role of FaFAD1 presence and absence polymorphism in producing γ-D and proposes that both alleles of FaFAD1 are required to produce the highest content of fruity aroma in strawberry fruit.


2021 ◽  
Author(s):  
Xiaowen Shi ◽  
Hua Yang ◽  
Chen Chen ◽  
Jie Hou ◽  
Katherine M Hanson ◽  
...  

Abstract Genomic imbalance caused by changing the dosage of individual chromosomes (aneuploidy) has a more detrimental effect than varying the dosage of complete sets of chromosomes (ploidy). We examined the impact of both increased and decreased dosage of fifteen distal and one interstitial chromosomal regions via RNA-seq of maize (Zea mays) mature leaf tissue to reveal new aspects of genomic imbalance. The results indicate that significant changes in gene expression in aneuploids occur both on the varied chromosome (cis) and the remainder of the genome (trans), with a wider spread of modulation compared with the whole-ploidy series of haploid to tetraploid. In general, cis genes in aneuploids range from a gene-dosage effect to dosage compensation, whereas for trans genes the most common effect is an inverse correlation in that expression is modulated towards the opposite direction of the varied chromosomal dosage, although positive modulations also occur. Furthermore, this analysis revealed the existence of increased and decreased effects in which expression of many genes under genome imbalance are modulated towards the same direction regardless of increased or decreased chromosomal dosage, which is predicted from kinetic considerations of multicomponent molecular interactions. The findings provide novel insights into understanding mechanistic aspects of gene regulation.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ningning Zhang ◽  
Yushu Ouyang ◽  
Jianlan Chang ◽  
Ping Liu ◽  
Xiangyang Tian ◽  
...  

Background. Platinum-based chemotherapy plays an antitumor role by damaging DNA. X-ray repair crosscomplementing protein 1 (XRCC1) participates in DNA repair and thus affects the sensitivity to platinum drugs. Two polymorphisms of XRCC1, rs25487 (Arg399Gln) and rs1799782 (Arg194Trp), have been widely studied for the association with clinical outcomes of platinum-based chemotherapy in Asian patients with non-small-cell lung cancer (NSCLC), but the results remain inconclusive. Thus, we performed the present meta-analysis. Methods. Literature search was performed in PubMed, Web of Science, and EMBASE up to June 2019. Odds ratios (ORs) for objective response ratio (ORR), Cox proportional hazard ratios (HRs) of overall survival (OS) and progression-free survival (PFS), and the corresponding 95% confidence intervals (95% CIs) were calculated to assess the association strengths between XRCC1 polymorphisms and clinical outcomes. Comparisons were performed in homozygous, heterozygous, dominant, and recessive models. Results. Finally, a total of 23 studies involving 5567 patients were included in the meta-analysis. Compared to ArgArg of rs25487, GlnGln ( OR = 1.71 , 95% CI: 1.16-2.52, p = .007 , I 2 = 56.8 % ) and GlnArg ( OR = 1.23 , 95% CI: 1.07-1.40, p = .003 , I 2 = 29.0 % ) were associated with higher ORR. Meanwhile, GlnGln indicated a favorable OS ( HR = 0.60 , 95% CI: 0.40-0.88) and PFS ( HR = 0.64 , 95% CI: 0.46-0.90). We also found positive associations between rs1799782 and ORR in all comparison models with low between-study heterogeneity. The association strength increased with the number of variant alleles (TrpTrp vs. ArgArg: OR = 1.73 , 95% CI:1.31-2.27; TrpArg vs. ArgArg: OR = 1.28 , 95% CI: 1.06-1.55), suggesting a gene dosage effect. In addition, TrpTrp predicted a longer OS. Conclusion. Our results showed that rs25487 and rs1799782 of XRCC1 are potential markers to predict clinical outcomes of platinum-based chemotherapy in Asian patients with NSCLC.


2020 ◽  
Vol 53 (1) ◽  
pp. 209-213
Author(s):  
Romeo Thorbecke ◽  
Masahiro Yamamoto ◽  
Yuki Miyahara ◽  
Mino Oota ◽  
Shoji Mizuno ◽  
...  

Author(s):  
Mario Mastrangelo ◽  
Barbara Torres ◽  
Gloria De Vita ◽  
Marina Goldoni ◽  
Agnese De Giorgi ◽  
...  

AbstractReported here is a novel patient carrying an unbalanced t (10q26.11-q26.3; 7p22.3) and presenting with a severe intellectual disability with autistic features, abnormalities of muscle tone, and a drug-responsive epilepsy. The prominence of neurological and neurodevelopmental abnormalities in the clinical phenotype highlights a possible pathogenic role for different genes in the involved regions. Hypothetical mechanisms may include a possible gene dosage effect for DOCK1 and/or haploinsufficiency of PRKAR1B SUN1, ADAP1, and GPER1.


2020 ◽  
Vol 71 (20) ◽  
pp. 6297-6310
Author(s):  
Hui Du ◽  
Gang Wang ◽  
Jian Pan ◽  
Yue Chen ◽  
Tingting Xiao ◽  
...  

Abstract Trichomes and fruit spines are important traits that directly affect the appearance quality and commercial value of cucumber (Cucumis sativus). Tril (Trichome-less), encodes a HD-Zip IV transcription factor that plays a crucial role in the initiation of trichomes and fruit spines, but little is known about the details of the regulatory mechanisms involved. In this study, analysis of tissue expression patterns indicated that Tril is expressed and functions in the early stages of organ initiation and development. Expression of Tril under the control of its own promoter (the TrilPro::Tril-3*flag fragment) could partly rescue the mutant phenotypes of tril, csgl3 (cucumber glabrous 3, an allelic mutant of tril), and fs1 (few spines 1, a fragment substitution in the Tril promoter region), providing further evidence that Tril is responsible for the initiation of trichomes and fruit spines. In lines with dense spine, fs1-type lines, and transgenic lines of different backgrounds containing the TrilPro::Tril-3*flag foreign fragment, spine density increased in conjunction with increases in Tril expression, indicating that Tril has a gene dosage effect on fruit spine density in cucumber. Numerous Spines (NS) is a negative regulatory factor of fruit spine density. Characterization of the molecular and genetic interaction between Tril and NS/ns demonstrated that Tril functions upstream of NS with respect to spine initiation. Overall, our results reveal a novel regulatory mechanism governing the effect of Tril on fruit spine development, and provide a reference for future work on breeding for physical quality in cucumber.


2020 ◽  
Vol 105 (8) ◽  
pp. e2825-e2833 ◽  
Author(s):  
Takeshi Yamaguchi ◽  
Akie Nakamura ◽  
Kanako Nakayama ◽  
Nozomi Hishimura ◽  
Shuntaro Morikawa ◽  
...  

Abstract Purpose Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder; however, its molecular etiology remains poorly understood. Methods We performed genetic analysis of 24 causative genes using next-generation sequencing in 167 CH cases, comprising 57 dyshormonogenesis (DH), 32 dysgenesis (TD) and 78 undiagnosed. The pathogenicity of variants was assessed by the American College of Medical Genetics guidelines, inheritance pattern, and published evidence. Furthermore, we compared the oligogenic groups and monogenic groups to examine the correlation between variant dosage and severity. Results We identified variants in 66.5% cases (111/167) and 15 genes, DUOX2, TSHR, PAX8, TG, TPO, DUOXA2, JAG1, GLIS3, DUOX1, IYD, SLC26A4, SLC5A5, SECISBP2, DIO1, and DIO3. Biallelic variants were identified in 12.6% (21/167), oligogenic in 18.0% (30/167), and monogenic in 35.9% (60/167); however, 68.5% of variants were classified as variant of unknown significance (VUS). Further examinations showed that 3 out of 32 cases with TD (9.4%) had pathogenic variants (2 of TSHR and 1 of TPO), and 8 out of 57 cases with DH (14.0%) (7 of DUOX2, 1 of TG) had pathogenic variants. In addition, TSH levels at the first visit were significantly higher in the oligogenic group than in the monogenic group. Conclusions The detection rate of pathogenic variants in Japanese CH was similar to that previously reported. Moreover, oligogenic cases were likely to be more severe than monogenic cases, suggesting that CH may exhibit a gene dosage effect. Further analysis of VUS pathogenicity is required to clarify the molecular basis of CH.


2020 ◽  
Vol 105 (7) ◽  
pp. 2392-2400
Author(s):  
Rebecca J Gordon ◽  
Dong Li ◽  
Daniel Doyle ◽  
Joshua Zaritsky ◽  
Michael A Levine

Abstract Context Hypophosphatemia and metabolic bone disease are associated with hereditary hypophosphatemic rickets with hypercalciuria (HHRH) due to biallelic mutations of SLC34A3 encoding the NPT2C sodium-phosphate cotransporter and nephrolithiasis/osteoporosis, hypophosphatemic 1 (NPHLOP1) due to monoallelic mutations in SLC34A1 encoding the NPT2A sodium-phosphate cotransporter. Objective To identify a genetic cause of apparent dominant transmission of HHRH. Design and Setting Retrospective and prospective analysis of clinical and molecular characteristics of patients studied in 2 academic medical centers. Methods We recruited 4 affected and 3 unaffected members of a 4-generation family in which the proband presented with apparent HHRH. We performed clinical examinations, biochemical and radiological analyses, and molecular studies of genomic DNA. Results The proband and her affected sister and mother carried pathogenic heterozygous mutations in 2 related genes, SLC34A1 (exon 13, c.1535G>A; p.R512H) and SLC34A3 (exon 13, c.1561dupC; L521Pfs*72). The proband and her affected sister inherited both gene mutations from their mother, while their clinically less affected brother, father, and paternal grandmother carried only the SLC34A3 mutation. Renal phosphate-wasting exhibited both a gene dosage–effect and an age-dependent attenuation of severity. Conclusions We describe a kindred with autosomal dominant hypophosphatemic rickets in which whole exome analysis identified digenic heterozygous mutations in SLC34A1 and SLC34A3. Subjects with both mutations were more severely affected than subjects carrying only one mutation. These findings highlight the challenges of assigning causality to plausible genetic variants in the next generation sequencing era.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Utku Erdem Soyaltin ◽  
Ilgin Yildirim Simsir ◽  
Baris Akinci ◽  
Canan Altay ◽  
Suleyman Cem Adiyaman ◽  
...  

Abstract Background Classical heterozygous pathogenic variants of the lamin A/C (LMNA) gene cause familial partial lipodystrophy type 2 (FPLD2). However, recent reports indicate phenotypic heterogeneity among carriers of LMNA pathogenic variants, and a few patients have been associated with generalized fat loss. Clinical Case Here, we report a patient with lamin A specific pathogenic variant at exon 11 LMNA p.R582H present in homozygous state. Fat distribution was compared radiographically to a heterozygote LMNA p.R582H patient from another pedigree, female healthy control, a series of adult female subjects with congenital generalized lipodystrophy type 1 (CGL1, n = 9) and typical FPLD2 (n = 8). The whole body MRI of the index case confirmed near-total loss of subcutaneous adipose tissue with well-preserved fat in the retroorbital area, palms and soles, mons pubis, and external genital region. This pattern resembled the fat loss pattern observed in CGL1 with only one difference: strikingly more fat was observed around mons pubis and the genital region. Also, homozygous p.R582H LMNA variant was associated with lower leptin level and earlier onset of metabolic abnormalities compared to heterozygous p.R582H variant and typical FPLD2 cases. On the other hand, heterozygous LMNA p.R582H variant was associated with partial fat loss which was similar to typical FPLD2 but less severe than the patients with the hot-spot variants at position 482. Conclusions Our observations and radiological comparisons demonstrate a gene dosage effect of LMNA variants on the severity of fat loss and add to the body of evidence that there may be complex genotype-phenotype relationships in this interesting disease known as FPLD2. Although the pathological basis for fat loss is not well understood in patients harboring pathogenic variants in the LMNA gene, our observation suggests that genetic factors modulate the extent of fat loss in LMNA associated lipodystrophy.


Sign in / Sign up

Export Citation Format

Share Document