mixed cell
Recently Published Documents


TOTAL DOCUMENTS

462
(FIVE YEARS 99)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
Vol 3 ◽  
Author(s):  
Ana Carolina Cardoso dos Santos Durão ◽  
Wesley Nogueira Brandão ◽  
Vitor Bruno ◽  
Lídia Emmanuela W. Spelta ◽  
Stephanie de Oliveira Duro ◽  
...  

The embryonic stage is the most vulnerable period for congenital abnormalities. Due to its prolonged developmental course, the central nervous system (CNS) is susceptible to numerous genetic, epigenetic, and environmental influences. During embryo implantation, the CNS is more vulnerable to external influences such as environmental tobacco smoke (ETS), increasing the risk for delayed fetal growth, sudden infant death syndrome, and immune system abnormalities. This study aimed to evaluate the effects of in utero exposure to ETS on neuroinflammation in the offspring of pregnant mice challenged or not with lipopolysaccharide (LPS). After the confirmation of mating by the presence of the vaginal plug until offspring birth, pregnant C57BL/6 mice were exposed to either 3R4F cigarettes smoke (Kentucky University) or compressed air, twice a day (1h each), for 21 days. Enhanced glial cell and mixed cell cultures were prepared from 3-day-old mouse pups. After cell maturation, both cells were stimulated with LPS or saline. To inhibit microglia activation, minocycline was added to the mixed cell culture media 24 h before LPS challenge. To verify the influence of in utero exposure to ETS on the development of neuroinflammatory events in adulthood, a different set of 8-week-old animals was submitted to the Autoimmune Experimental Encephalomyelitis (EAE) model. The results indicate that cells from LPS-challenged pups exposed to ETS in utero presented high levels of proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNFα) and decreased cell viability. Such a proinflammatory environment could modulate fetal programming by an increase in microglia and astrocytes miRNA155. This scenario may lead to the more severe EAE observed in pups exposed to ETS in utero.


2022 ◽  
Author(s):  
Tung Truong ◽  
Manuel Hayn ◽  
Camilla Kaas Frich ◽  
Lucy Kate Ladefoged ◽  
Morten Jarlstad Olesen ◽  
...  

Eliminating latently infected cells is a highly challenging, indispensable step towards the overall cure for HIV/AIDS. We recognized that the unique HIV protease cut site (Phe-Pro) can be reconstructed using a potent toxin, monomethyl auristatin F (MMAF), which features Phe at its C-terminus. We hypothesized that this presents opportunities to design prodrugs that are specifically activated by the HIV protease. To investigate this, a series of MMAF derivatives was synthesized and evaluated in cell culture using latently HIV-infected cells. Cytotoxicity of compounds was enhanced upon latency reversal by up to 11-fold. In a mixed cell population, nanomolar concentrations of the lead compound depleted predominantly the HIV-infected cells and in doing so markedly enriched the pool with the uninfected cells. Despite expectation, mechanism of action of the synthesized toxins was not as HIV protease-specific prodrugs, but likely through the synergy of toxicities between the toxin and the reactivated virus.


2021 ◽  
Author(s):  
Sarah M Roelle ◽  
Nidhi Shukla ◽  
Anh T Pham ◽  
Anna M Bruchez ◽  
Kenneth A Matreyek

Viral spillover from animal reservoirs can trigger public health crises and cripple the world economy. Knowing which viruses are primed for zoonotic transmission can focus surveillance efforts and mitigation strategies for future pandemics. Successful engagement of receptor protein orthologs is necessary during cross-species transmission. The clade 1 sarbecoviruses including SARS-CoV and SARS-CoV-2 enter cells via engagement of ACE2, while the receptor for clade 2 and clade 3 remains largely uncharacterized. We developed a mixed cell pseudotyped virus infection assay to determine whether various clade 2 and 3 sarbecovirus spike proteins can enter HEK 293T cells expressing human or Rhinolophus horseshoe bat ACE2 proteins. The receptor binding domains from BtKY72 and Khosta-2 used human ACE2 for entry, while BtKY72 and Khosta-1 exhibited widespread use of diverse rhinolophid ACE2s. A lysine at ACE2 position 31 appeared to be a major determinant of the inability of these RBDs to use a certain ACE2 sequence. The ACE2 protein from R. alcyone engaged all known clade 3 and clade 1 receptor binding domains. We observed little use of Rhinolophus ACE2 orthologs by the clade 2 viruses, supporting the likely use of a separate, unknown receptor. Our results suggest that clade 3 sarbecoviruses from Africa and Europe use Rhinolophus ACE2 for entry, and their spike proteins appear primed to contribute to zoonosis under the right conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shivanthan Shanthikumar ◽  
Melanie R. Neeland ◽  
Richard Saffery ◽  
Sarath C. Ranganathan ◽  
Alicia Oshlack ◽  
...  

In epigenome-wide association studies analysing DNA methylation from samples containing multiple cell types, it is essential to adjust the analysis for cell type composition. One well established strategy for achieving this is reference-based cell type deconvolution, which relies on knowledge of the DNA methylation profiles of purified constituent cell types. These are then used to estimate the cell type proportions of each sample, which can then be incorporated to adjust the association analysis. Bronchoalveolar lavage is commonly used to sample the lung in clinical practice and contains a mixture of different cell types that can vary in proportion across samples, affecting the overall methylation profile. A current barrier to the use of bronchoalveolar lavage in DNA methylation-based research is the lack of reference DNA methylation profiles for each of the constituent cell types, thus making reference-based cell composition estimation difficult. Herein, we use bronchoalveolar lavage samples collected from children with cystic fibrosis to define DNA methylation profiles for the four most common and clinically relevant cell types: alveolar macrophages, granulocytes, lymphocytes and alveolar epithelial cells. We then demonstrate the use of these methylation profiles in conjunction with an established reference-based methylation deconvolution method to estimate the cell type composition of two different tissue types; a publicly available dataset derived from artificial blood-based cell mixtures and further bronchoalveolar lavage samples. The reference DNA methylation profiles developed in this work can be used for future reference-based cell type composition estimation of bronchoalveolar lavage. This will facilitate the use of this tissue in studies examining the role of DNA methylation in lung health and disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Winnie W. I. Hui ◽  
Angela Simeone ◽  
Katherine G. Zyner ◽  
David Tannahill ◽  
Shankar Balasubramanian

AbstractG-quadruplexes (G4s) are four-stranded DNA secondary structures that form in guanine-rich regions of the genome. G4s have important roles in transcription and replication and have been implicated in genome instability and cancer. Thus far most work has profiled the G4 landscape in an ensemble of cell populations, therefore it is critical to explore the structure–function relationship of G4s in individual cells to enable detailed mechanistic insights into G4 function. With standard ChIP-seq methods it has not been possible to determine if G4 formation at a given genomic locus is variable between individual cells across a population. For the first time, we demonstrate the mapping of a DNA secondary structure at single-cell resolution. We have adapted single-nuclei (sn) CUT&Tag to allow the detection of G4s in single cells of human cancer cell lines. With snG4-CUT&Tag, we can distinguish cellular identity from a mixed cell-type population solely based on G4 features within individual cells. Our methodology now enables genomic investigations on cell-to-cell variation of a DNA secondary structure that were previously not possible.


2021 ◽  
Vol 2 (4) ◽  
pp. 100847
Author(s):  
Matthew J. Camiolo ◽  
Sally E. Wenzel ◽  
Anuradha Ray
Keyword(s):  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maria Pia Campagna ◽  
Alexandre Xavier ◽  
Jeannette Lechner-Scott ◽  
Vicky Maltby ◽  
Rodney J. Scott ◽  
...  

AbstractThe aetiology and pathophysiology of complex diseases are driven by the interaction between genetic and environmental factors. The variability in risk and outcomes in these diseases are incompletely explained by genetics or environmental risk factors individually. Therefore, researchers are now exploring the epigenome, a biological interface at which genetics and the environment can interact. There is a growing body of evidence supporting the role of epigenetic mechanisms in complex disease pathophysiology. Epigenome-wide association studies (EWASes) investigate the association between a phenotype and epigenetic variants, most commonly DNA methylation. The decreasing cost of measuring epigenome-wide methylation and the increasing accessibility of bioinformatic pipelines have contributed to the rise in EWASes published in recent years. Here, we review the current literature on these EWASes and provide further recommendations and strategies for successfully conducting them. We have constrained our review to studies using methylation data as this is the most studied epigenetic mechanism; microarray-based data as whole-genome bisulphite sequencing remains prohibitively expensive for most laboratories; and blood-based studies due to the non-invasiveness of peripheral blood collection and availability of archived DNA, as well as the accessibility of publicly available blood-cell-based methylation data. Further, we address multiple novel areas of EWAS analysis that have not been covered in previous reviews: (1) longitudinal study designs, (2) the chip analysis methylation pipeline (ChAMP), (3) differentially methylated region (DMR) identification paradigms, (4) methylation quantitative trait loci (methQTL) analysis, (5) methylation age analysis and (6) identifying cell-specific differential methylation from mixed cell data using statistical deconvolution.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3738-3738
Author(s):  
Pingjun Chen ◽  
Siba Elhussein ◽  
L. Jeffrey Medeiros ◽  
Joseph D. Khoury ◽  
Jia Wu

Abstract Background Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) is an indolent disease. However, a small subset of cases may progress to accelerated CLL (aCLL) and eventually transform to diffuse large B-cell lymphoma, also known as Richter transformation (RT). Core-needle biopsies of CLL in accelerated and transformed phases present a plethora of diagnostic challenges, hindering a confident and precise morphologic assessment. To overcome these impediments, we propose a high-throughput diagnostic pipeline empowered by deep learning to discover and characterize intrinsic cell populations and help boost diagnostic accuracy. Material & Methods We collected 193 biopsies from 125 patients, including 69 CLL slides from 44 patients, 44 aCLL slides from 34 patients, and 80 RT slides from 47 patients. Our computational pipeline contained the following 7 steps (Figure 1): 1) ROI selection, 2) stain normalization ; 3) cell segmentation through transfer learning, using a pre-trained deep learning model (HoVer-Net); 4) quality control of automated cell segmentation; 5) profiling cell populations from three different perspectives, including grouping of cells into large or small subtypes using supervised learning, discovering the intrinsic cell subpopulations with unsupervised learning, and mixing cells for indiscriminate profiling; 6) pruning uninformative features by quantifying feature importance via impurity analysis; 7) systematically evaluating the diagnostic performance of the three cellular profiling methods as well as feature fusion and selection, followed by two validation strategies: The first one aimed to stratify patients into training and testing cohorts to balance key clinicopathologic factors (one-shot validation); and the second one aimed to randomly split patients into training or testing sets, followed by repeat splitting for 100 times (repeated cross-validation). Results First, we sought to define cells into large or small populations, where cell size cutoff was learned to maximize pairwise separation among three disease types (CLL, aCLL, and RT). We then measured large cell ratios, correlations between large and small cell intensity and density, and mean cell to the nearest-neighbor distance, and labeled the extracted attributes as "supervised feature set" (Figure 1E). Second, we applied an unsupervised learning (i.e., spectral clustering) to detect the intrinsic cell subpopulations based on morphology and intensity. Interestingly, three cell phenotypes were uncovered, which we termed as "CLL-like," "aCLL-like," and "RT-like" cells. The ratios of the three cell types in each ROI were computed and labeled as "unsupervised feature set" (Figure 1F). Third, we analyzed cells as one cohort, and computed the mean cell size and intensity, cellular density, and cell to its nearest-neighbor distance, this population was labeled as "mixed cell feature set" as a whole (Figure 1G). lastly, we applied feature selection of fused feature sets, where feature importance was calculated via impurity analysis. Subsequently, 6 out of the total 17 features were pruned (Figure 1H). When testing the three feature sets separately, we observed that the "mixed cell feature set" achieved the best performance (AUC=0.951; n=4 features) followed by the "unsupervised feature set" (AUC=0.902; n=3 features) and "supervised feature set" (AUC=0.829; n=10 features). By integrating the three feature sets, we obtained an accuracy of 0.874 and an area under the curve (AUC) of 0.961 in one-shot validation and a mean accuracy of 0.831 and AUC of 0.952 in repeated cross-validation, surpassing the performance obtained by solely adopting a single feature set at a time. Application of feature selection to fused feature sets further boosted the accuracy to 0.883 and AUC to 0.966 via one-shot validation, and mean accuracy of 0.842 and mean AUC of 0.959 via repeated cross-validation (Figure 1I). Conclusion The "mixed feature set" achieved higher diagnostic accuracy in comparison to the "supervised" and "unsupervised" feature sets, emphasizing the power of characterizing heterogeneous cell populations. The synergy of three feature sets validates the hypothesis that integrating different ways of cellular phenotyping may optimize the predictive power. Eliminating less informative features further enhances diagnostic accuracy, highlighting the importance of adopting meaningful attributes. Figure 1 Figure 1. Disclosures Khoury: Stemline Therapeutics: Research Funding; Kiromic: Research Funding; Angle: Research Funding.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A131-A131
Author(s):  
Agnes Hamburger ◽  
Han Xu ◽  
Yuta Ando ◽  
Grace Asuelime ◽  
Kristian Bolanos-Ibarra ◽  
...  

BackgroundMesothelin (MSLN) and carcinoembryonic antigen (CEA) are classic tumor-associated antigens that are expressed in many solid tumors including the majority of lung, colorectal and pancreatic cancers. However, both MSLN and CEA are also expressed in vital normal organs. This normal expression creates risk of serious inflammation for CEA- or MSLN-directed therapeutics. To date all active CEA- or MSLN-targeted investigational therapeutics have been toxic when administered systemically.MethodsWe have developed a safety mechanism to protect normal tissues without abrogating sensitivity of cytotoxic T cells directed at MLSN(+) or CEA(+) tumors in a subset of patients with defined loss of heterozygosity (LOH) in their tumors (figure 1). This dual-receptor (Tmod< sup >TM</sup >) system exploits common LOH at the HLA locus in cancer cells, allowing T cells to recognize the difference between tumor and normal tissue.1 2 T cells engineered with specific Tmod constructs contain: (i) a MSLN- or CEA-activated CAR; and, (ii) an inhibitory receptor gated by HLA-A*02. HLA-A*02 binding blocks T cell cytotoxicity, even in the presence of MSLN or CEA. The Tmod system is designed to treat heterozygous HLA class I patients, selected for HLA LOH. When HLA-A*02 is absent from tumors selected for LOH, the CARs are predicted to mediate potent killing of the A*02(-) malignant cells.ResultsThe Tmod system robustly protects surrogate normal cells even in mixed-cell populations in vitro while mediating robust cytotoxicity of tumor cells in xenograft models (see example in figure 2). The MSLN CAR can also be paired with other blockers, supporting scalability of the approach to patients beyond HLA-A*02 heterozygotes.Abstract 122 Figure 1Illustration of the Tmod T cell engaging with tumor cells with somatic loss of HLA-A*02 and with normal cells.Abstract 122 Figure 2Bioluminescence measurements show the average difference between the size of the MSLN(+)A*02(+) ‘normal’ graft compared to the MSLN(+)A*02(-) tumor graft on the two flanks of mice after T cell infusion. Both tumor and normal grafts are destroyed by CAR-Ts (CAR-3 and M5 benchmark) while the MSLN Tmod cells kill the tumor but not the normal graft.ConclusionsThe Tmod mechanism may provide an alternative route to leverage solid-tumor antigens such as MSLN and CEA in safer, more effective ways than previously possible.ReferencesHamburger AE, DiAndreth B, Cui J, et al. Engineered T cells directed at tumors with defined allelic loss. Mol Immunol 2020;128:298–310.Hwang MS, Mog BJ, Douglass J, et al. Targeting loss of heterozygosity for cancer-specific immunotherapy. Proc Natl Acad Sci U S A 2021;118(12):e2022410118.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2855
Author(s):  
Gaurav Pendharkar ◽  
Yen-Ta Lu ◽  
Chia-Ming Chang ◽  
Meng-Ping Lu ◽  
Chung-Huan Lu ◽  
...  

Cancer cell–immune cell hybrids and cancer immunotherapy have attracted much attention in recent years. The design of efficient cell pairing and fusion chips for hybridoma generation has been, subsequently, a subject of great interest. Here, we report a three-layered integrated Microfluidic Flip-Chip (MFC) consisting of a thin through-hole membrane sandwiched between a mirrored array of microfluidic channels and saw-tooth shaped titanium electrodes on the glass. We discuss the design and operation of MFC and show its applicability for cell fusion. The proposed device combines passive hydrodynamic phenomenon and gravitational sedimentation, which allows the transportation and trapping of homotypic and heterotypic cells in large numbers with pairing efficiencies of 75~78% and fusion efficiencies of 73%. Additionally, we also report properties of fused cells from cell biology perspectives, including combined fluorescence-labeled intracellular materials from THP1 and A549, mixed cell morphology, and cell viability. The MFC can be tuned for pairing and fusion of cells with a similar protocol for different cell types. The MFC can be easily disconnected from the test setup for further analysis.


Sign in / Sign up

Export Citation Format

Share Document