northerly wind
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 34)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chengfei He ◽  
Zhengyu Liu ◽  
Bette L. Otto-Bliesner ◽  
Esther C. Brady ◽  
Chenyu Zhu ◽  
...  

AbstractThe deglacial hydroclimate in South China remains a long-standing topic of debate due to the lack of reliable moisture proxies and inconsistent model simulations. A recent hydroclimate proxy suggests that South China became wet in cold stadials during the last deglaciation, with the intensification proposed to be contributed mostly by the East Asian summer monsoon (EASM). Here, based on a deglacial simulation in a state-of-the-art climate model that well reproduces the evolution of EASM, winter monsoon (EAWM) and the associated water isotopes in East Asia, we propose that the intensified hydroclimate in South China is also contributed heavily by the rainfall in autumn, during the transition between EASM and EAWM. The excessive rainfall in autumn results from the convergence between anomalous northerly wind due to amplified land-sea thermal contrast and anomalous southerly wind associated with the anticyclone over Western North Pacific, both of which are, in turn, forced by the slowdown of the Atlantic thermohaline circulation. Regardless the rainfall change, however, the modeled δ18Op remains largely unchanged in autumn. Our results provide new insights to East Asia monsoon associated with climate change in the North Atlantic.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 842
Author(s):  
Wei Song ◽  
Xiaochen Ye

Based on the NECP/NCAR reanalysis dataset, the associations between the number of cold days (NCD) over East Asia (100–150° E, 25–55° N) and Arctic Oscillation (AO)/Arctic warming during 1956–2015 are explored. The results show the NCD was closely associated with AO during 1956–1990 and Arctic warming during 1991–2015. It reveals NCD over East Asia showed a downward trend and a significantly negative correlation with AO in the previous stage, while it presented an upward trend and notably positive association with Arctic warming in the later period. Meanwhile the increase in the earlier-stage AO will often be accompanied by the weakness of the Siberian high (SH), the Ural Mountains Blocking high (UBH), and the East Asian trough (EAT), and a “positive–negative–positive” wave band exist in the upper troposphere, which is linked with weakened northerly wind over East Asia. All these anomalies are unfavorable for the southward transportation of cold air, eventually leading to the decrease in NCD over East Asia. Additionally, when the near-surface temperature over the Arctic rises in the later period, on the one hand, SH reinforces and further results in more NCD over East Asia; on the other hand, the 1000–500 hPa thickness field displays a “north positive–south negative” pattern, which is conducive to the deceleration of the westerlies at mid-latitudes over Eurasia, and further bring about the enhancement of EAT and UBH, favoring the southward intrusion of cold air, finally, more NCD are generated.


2021 ◽  
pp. 34-42
Author(s):  
A. V. Kholoptsev ◽  
◽  
S. A. Podporin ◽  
◽  

Statistical relationships are investigated between changes in total Arctic sea ice volume and variations in mean meridional velocities of air crossing the corresponding sections of the southern Arctic boundary during the summer months in 1979-2018. A consistent significant correlation between the ice volume and northerly wind speeds in the lower tropospheric layers is revealed for the Siberian sector. An increase in the analyzed correlation is found in 2012-2020 for all Northern Hemisphere sectors, except for the Atlantic one, which is supposedly due to the decrease in mean solar activity levels taking place against the intensifying global climate warming.


2021 ◽  
Vol 51 (5) ◽  
pp. 1637-1654
Author(s):  
Dehai Song ◽  
Wen Wu ◽  
Qiang Li

AbstractBay–shelf exchange is critical to coastal systems because it promotes self-purification or pollution dilution of the systems. In this study, the effects of wave–current interactions on bay–shelf exchange are explored in a micromesotidal system—Daya Bay in southern China. Waves can enlarge the shear-induced seaward transport and reduce the residual-current-induced landward transport, which benefits the bay–shelf exchange; however, tides work oppositely and slow the wave-induced bay–shelf exchange through vertical mixing and reduced shear-induced exchange. Five wave–current interactions are compared, and it is found that the depth-dependent wave radiation stress (WRS) contributes most to the bay–shelf exchange, followed by the wave dissipation as a source term in the turbulence kinetic energy equation, and the mean current advection and refraction of wave energy (CARWE). The vertical transfer of wave-generated pressure to the mean momentum equation (also known as the form drag) and the combined wave–current bottom stress (CWCBS) play minor roles in the bay–shelf exchange. The bay–shelf exchange is faster under southerly wind than under northerly wind because the bay is facing southeast; synoptic events such as storms enhance the bay–shelf exchange. The CARWE terms are dominant in both seasonal and synoptic variations of the bay–shelf exchange because they can considerably change the distribution of significant wave height. The WRS changes the bay–shelf exchange mainly through altering the flow velocity, whereas the wave dissipation on turbulence alters the vertical mixing. The form drag and the CWCBS have little impact on the bay–shelf exchange or its seasonal and synoptic variations.


2021 ◽  
Vol 13 (8) ◽  
pp. 1480
Author(s):  
Eunjeong Lee ◽  
Jung-Hoon Kim ◽  
Ki-Young Heo ◽  
Yang-Ki Cho

An observed sea fog event over the Eastern Yellow Sea on 15–16 April 2012 was reproduced in the Weather Research and Forecasting (WRF) simulation with high-resolution to investigate the roles of physical processes and synoptic-scale flows on advection fog with phase transition. First, it was verified by a satellite-based fog detection algorithm and in situ observation data. In the simulation, longwave (infrared) radiative cooling (LRC) with a downward turbulent sensible heat flux (SHF), due to the turbulence after sunset, triggered cloud formation over the surface when warm-moist air advection occurred. At night, warm air advection with continuous cooling due to longwave radiation and SHF near the surface modulated the change of the SHF from downward to upward, resulting in a drastic increase in the turbulent latent heat flux (LHF) that provided sufficient moisture at the lower atmosphere (self-moistening). This condition represents a transition from cold-sea fog to warm-sea fog. Enhanced turbulent mixing driven by a buoyancy force increased the depth of the sea fog and the marine atmospheric boundary layer (MABL) height, even at nighttime. In addition, cold air advection with a prevailing northerly wind at the top of the MABL led to a drastic increase in turbulent mixing and the MABL height and rapid growth of the height of sea fog. After sunrise, shortwave radiative warming in the fog layers offsetting the LRC near the surface weakened thermal instability, which contributed to the reduction in the MABL height, even during the daytime. In addition, dry advection of the northerly wind induced dissipation of the fog via evaporation. An additional sensitivity test of sea surface salinity showed weaker and shallower sea fog than the control due to the decrease in both the LHF and local self-moistening. Detailed findings from the simulated fog event can help to provide better guidance for fog detection using remote sensing.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 386
Author(s):  
Yongyue Luo ◽  
Chun Li ◽  
Jian Shi ◽  
Xiadong An ◽  
Yaqing Sun

The impacts of Arctic sea ice on the interannual variability of winter extreme low temperature (WELT) in Northeast China (NEC) and the associated atmospheric circulation patterns are explored in this study based on meteorological observation and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. Results show that WELT in NEC has prominent interannual variability. We further use ±0.8 standard deviation as the threshold to select the years of frequent and rare extreme low temperature anomalies. Using composite analysis, we find that there are significant negative geopotential height anomalies at 500 hPa over NEC and positive geopotential height anomalies along the Arctic region, which represent the intensification of the East Asian trough (EAT) and the negative Arctic Oscillation (AO) phase in the years of more frequent WELT. The opposite characteristics are detected in the years of rare WELT. Furthermore, we determine that the Barents-Kara Seas are key sea ice regions in Arctic area. In the years of frequent WELT, the decrease of autumn Barents-Kara Seas sea ice and the positive sea surface temperature anomaly can last until the following winter, which is conducive to the intensification of anticyclonic anomalies in Ural regions and the northward extension of Ural ridge (UR). The northerly flow in front of UR guides the cold air penetrating southward from polar regions. Moreover, the anomalous cyclone over East Asia deepens the EAT. The northerly wind behind EAT guides the cold air to the NEC region, causing the wintertime low temperature there. The almost opposite situation occurs in the years of rare WELT.


2021 ◽  
Vol 15 (3) ◽  
pp. 1307-1319
Author(s):  
Sourav Chatterjee ◽  
Roshin P. Raj ◽  
Laurent Bertino ◽  
Sebastian H. Mernild ◽  
Meethale Puthukkottu Subeesh ◽  
...  

Abstract. The amount and spatial extent of Greenland Sea (GS) ice are primarily controlled by the sea ice export across the Fram Strait (FS) and by local seasonal sea ice formation, melting, and sea ice dynamics. In this study, using satellite passive microwave sea ice observations, atmospheric and a coupled ocean-sea ice reanalysis system, TOPAZ4, we show that both the atmospheric and oceanic circulation in the Nordic Seas (NS) act in tandem to explain the SIC variability in the south-western GS. Northerly wind anomalies associated with anomalously low sea level pressure (SLP) over the NS reduce the sea ice export in the south-western GS due to westward Ekman drift of sea ice. On the other hand, the positive wind stress curl strengthens the cyclonic Greenland Sea Gyre (GSG) circulation in the central GS. An intensified GSG circulation may result in stronger Ekman divergence of surface cold and fresh waters away from the south-western GS. Both of these processes can reduce the freshwater content and weaken the upper-ocean stratification in the south-western GS. At the same time, warm and saline Atlantic Water (AW) anomalies are recirculated from the FS region to the south-western GS by a stronger GSG circulation. Under weakly stratified conditions, enhanced vertical mixing of these subsurface AW anomalies can warm the surface waters and inhibit new sea ice formation, further reducing the SIC in the south-western GS.


Author(s):  
Eunjeong Lee ◽  
Jung-Hoon Kim ◽  
Ki-Young Heo ◽  
Yang-Ki Cho

Sea fog event over the Eastern Yellow Sea on 15–16 April 2012 was reproduced in the Weather Research and Forecasting (WRF) simulation with high-resolution to investigate the roles of phys-ical processes and synoptic-scale flows on advection fog with sea surface warming. Initially, longwave radiative cooling (LRC) with negative sensible heat flux (SHF) due to the turbulence af-ter sunset triggered a formation of cloud at the surface under the moist advection with a southerly wind. This is a conventional type of advection fog. At night, continuous cooling due to longwave radiation and SHF near the surface modulated the change of the SHF from negative to positive, resulting in a drastic increase in the latent heat flux (LHF) that provided sufficient moisture at lower atmosphere (self-moistening). This is a favorable condition for advection fog with sea sur-face heating (ssH), and this transition represents advection fog with ssH. Enhanced turbulent mixing driven by a buoyancy force increased the depth of the sea fog with a gradual rise in the marine atmospheric boundary layer (MABL) height, even at nighttime. In addition, cold advec-tion with a prevailing northerly wind at the top of the MABL led to a drastic increase in turbulent mixing and the MABL height, which resulted in rapid growth of the height of sea fog due to ver-tical diffusion. After sunrise, shortwave radiative warming in the fog layers offsetting the LRC near the surface weakened thermal instability, which contributed to the reduction in the MABL height, even during the daytime. In addition, dry advection of northerly wind induced dissipa-tion of the fog via evaporation. An additional sensitivity test of sea surface salinity showed weaker and shallower sea fog than the control due to the decrease in both the LHF and local self-moistening.


2021 ◽  
pp. 1-37
Author(s):  
Qian Liu ◽  
Guixing Chen ◽  
Lin Wang ◽  
Yuki Kanno ◽  
Toshiki Iwasaki

AbstractThe winter monsoon has strong impacts on East Asia via latitude-crossing southward cold airmass fluxes called cold air outbreaks (CAOs). CAOs have a high diversity in terms of meridional extent and induced weather. Using the daily cold airmass flux normalized at 50°N and 30°N during 1958–2016, we categorize the CAOs into three groups: high–middle (H–M), high–low (H–L) and middle–low (M–L) latitude events. The H–L type is found to have the longest duration, and the M–L type is prone to the strong CAOs regarding normalized intensity. The H–L and H–M events feature a large-scale dipole pattern of cold airmass flux over high-latitude Eurasia, and the former (latter) events feature relatively strong anticyclonic circulation over Siberia (cyclonic circulation over northeastern Asia). In contrast, the M–L events are characterized by a cyclonic anomaly over northeastern Asia but no obvious high-latitude precursor. The H–L events have the greatest coldness anomaly in airmasses near the surface, and the M–L events mainly feature a strong northerly wind. As a result, the H–L events induce widespread long-lasting low temperatures over East Asia, while the M–L events induce a sharp temperature drop at mainly low latitudes. Both H–L and M–L events coupling with the MJO enhance rainfall over the South China Sea, while H–M events increase rainfall over southern China. Moreover, the occurrences of H–L and M–L events experience a long-term decrease since the 1980s, which induce a stronger warming trend in the cold extremes than in the winter mean temperature at mid-low latitudes over East Asia.


Sign in / Sign up

Export Citation Format

Share Document