microwave hyperthermia
Recently Published Documents


TOTAL DOCUMENTS

434
(FIVE YEARS 39)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
pp. 281-311
Author(s):  
Dario B. Rodrigues ◽  
Hana Dobsicek-Trefna ◽  
Sergio Curto ◽  
Lukas Winter ◽  
Jason K. Molitoris ◽  
...  

2021 ◽  
Vol 66 (6) ◽  
pp. 81-92
Author(s):  
O. Kurpeshev

The review analyzes the features of the interaction of electromagnetic (EM) energy with various tissues and the temperature distribution in model, experimental and clinical studies from emitters for external and intracavitary microwave hyperthermia (MWHT). The effect of MWHT on the antitumor efficacy of radiation (RT) and / or chemotherapy (CT), as well as toxic effects on normal tissues, was studied. Based on the literature data and our own experience, some approaches to the treatment of cancer patients have been identified. The general principles of the method, the design features of the applicators and their role in creating a hyperthermic regime in tumors of superficial and subsurface localization are also considered. The development of methods for thermometric control and supply of the EM field, allowing relatively uniform heating of tumors, as well as the determination of the minimum effective thermal doses, remains a priority area of research both in MW and other hyperthermia methods. Based on the literature data and our own experience, some approaches to the treatment of cancer patients have been identified.


2021 ◽  
Author(s):  
Faihaa Eltigani ◽  
Sulafa Ahmed ◽  
Maged Yahya ◽  
Mawahib Ahmed

Abstract Background: Liver tumor, also known as hepatic tumor is one of the most common cancers with 80% of cases occurs in developing countries. Microwave hyperthermia is one of the promising treatment modalities that use microwaves to destroy the cancer cells by rising their temperature to 41- 45°C. This temperature elevation is achieved by using an applicator such as antennas. This study aims to design a microwave sleeve antenna capable of heating hepatic tumors (with different sizes and locations) to the therapeutic range of temperature for hyperthermia. Method: The sleeve antenna was designed to be resonate at 2.45 GHz and tested in a free space. Then; the antenna was tested in 6 different 3D liver models: Model A: without a tumor or blood vessels, Model B: with a tumor (2B3cm) and without blood vessels, Model C: created by adding blood vessels to model B, then a small tumor (1.5a1.5cm) was created and its location (Model D) and size (Model E) were changed. Finally, a model with a spherical tumor of 1.5 cm diameter (Model F) was tested. Results: The return loss (S-parameters) of the antenna was varied from -45 dB to -25 dB in the different liver models. The Specific Absorption Rate (SAR) reached 30W/kg in the tumor and less than 24 W/kg in the surrounding tissues, while the tumor temperature elevated to the therapeutic ranges of hyperthermia in the all models and the surrounding tissues remain at a safe temperature range. Conclusions: The obtained results showed the capability of the designed antenna to raise the temperature of hepatic tumors to the therapeutic ranges of hyperthermia.


Author(s):  
Jian Yang ◽  
Xiangliang Jin ◽  
Yan Peng ◽  
Jun Luo

Microwave hyperthermia is a new method of treating cancer, where the therapeutic effect is determined by the heating temperature. Traditional active temperature sensors are interfered by high frequency so that the accuracy of temperature measurement cannot be guaranteed. It is of great significance to study the high-precision fluorescent optical fiber temperature sensor with complete insulation. This paper has realized a compact and practical fluorescent optical fiber temperature sensor after studying the optical path, circuit, data processing algorithm. In order to improve the accuracy of the system, the weighted linear least-squares fitting algorithm is improved in this paper. Through experimental tests, compared with the standard linear least-squares fitting algorithm and the unimproved weighted linear least-squares fitting algorithm, the accuracy of the algorithm is improved by about 98% and 65.5%, respectively. In addition, the response time is reduced by about 36.5%, compared with the unimproved weighted linear least-squares fitting algorithm. This algorithm fully meets the precision requirements of microwave hyperthermia.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mareike F. Bauer ◽  
Michael Hader ◽  
Markus Hecht ◽  
Maike Büttner-Herold ◽  
Rainer Fietkau ◽  
...  

Abstract Background Research on cell-in-cell (CIC) phenomena, including entosis, emperipolesis and cannibalism, and their biological implications has increased in recent years. Homotypic and heterotypic engulfment of various target cells by numerous types of host cells has been studied in vitro and in tissue sections. This work has identified proteins involved in the mechanism and uncovered evidence for CIC as a potential histopathologic predictive and prognostic marker in cancer. Our experimental study focused on non-professional phagocytosis of leukocytes. Results We studied the engulfment of peripheral blood mononuclear cells isolated from healthy donors by counting CIC structures. Two non-tumorigenic cell lines (BEAS-2B, SBLF-9) and two tumour cell lines (BxPC3, ICNI) served as host cells. Immune cells were live-stained and either directly co-incubated or treated with irradiation or with conventional or microwave hyperthermia. Prior to co-incubation, we determined leukocyte viability for each batch via Annexin V-FITC/propidium iodide staining. All host cells engulfed their targets, with uptake rates ranging from 1.0% ± 0.5% in BxPC3 to 8.1% ± 5.0% in BEAS-2B. Engulfment rates of the cancer cell lines BxPC3 and ICNI (1.6% ± 0.2%) were similar to those of the primary fibroblasts SBLF-9 (1.4% ± 0.2%). We found a significant negative correlation between leukocyte viability and cell-in-cell formation rates. The engulfment rate rose when we increased the dose of radiotherapy and prolonged the impact time. Further, microwave hyperthermia induced higher leukocyte uptake than conventional hyperthermia. Using fluorescent immunocytochemistry to descriptively study the proteins involved, we detected ring-like formations of diverse proteins around the leukocytes, consisting, among others, of α-tubulin, integrin, myosin, F-actin, and vinculin. These results suggest the involvement of actomyosin contraction, cell-cell adhesion, and the α-tubulin cytoskeleton in the engulfment process. Conclusions Both non-tumorigenic and cancer cells can form heterotypic CIC structures by engulfing leukocytes. Decreased viability and changes caused by microwave and X-ray irradiation trigger non-professional phagocytosis.


Sign in / Sign up

Export Citation Format

Share Document