p75 neurotrophin receptor
Recently Published Documents


TOTAL DOCUMENTS

492
(FIVE YEARS 78)

H-INDEX

63
(FIVE YEARS 5)

2022 ◽  
Vol 23 (1) ◽  
pp. 570
Author(s):  
Hui-Chun Yu ◽  
Hsien-Bin Huang ◽  
Hsien-Yu Huang Tseng ◽  
Ming-Chi Lu

We investigated the role of brain-derived neurotrophic factor (BDNF) and its signaling pathway in the proinflammatory cytokines production of macrophages. The effects of different concentrations of BDNF on proinflammatory cytokines expression and secretion in U937 cell-differentiated macrophages, and human monocyte-derived macrophages were analyzed using enzyme-linked immunosorbent assay and real-time polymerase chain reaction. The CRISPR-Cas9 system was used to knockout p75 neurotrophin receptor (p75NTR), one of the BDNF receptors. Next-generation sequencing (NGS) was conducted to search for BDNF-regulated microRNA. A very low concentration of BDNF (1 ng/mL) could suppress the secretion of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 in lipopolysaccharide (LPS)-stimulated macrophages but did not change their mRNA expression. BDNF suppressed IL-1β and IL-6 secretion in human monocyte-derived macrophages. In U937 cells, BDNF suppressed the phosphorylation of JNK and c-Jun. The p75NTR knockout strongly suppressed IL-1β, IL-6, and TNF-α secretion in macrophages and LPS-stimulated macrophages. BDNF regulated the expression of miR-3168 with Ras-related protein Rab-11A as its target. In conclusion, BDNF suppressed proinflammatory cytokines secretion in macrophages and inhibited the phosphorylation of JNK. Knockout of p75NTR suppressed proinflammatory cytokines expression and secretion. BDNF upregulated the expression of miR-3168. The inhibition of p75NTR could be a potential strategy to control inflammation.


2022 ◽  
Vol 17 (4) ◽  
pp. 701
Author(s):  
Janne Koskimäki ◽  
JoelF Ritala ◽  
SeánB Lyne ◽  
Antti Sajanti ◽  
Romuald Girard

2021 ◽  
Vol 19 ◽  
Author(s):  
Wei Tan ◽  
Longjia Dong ◽  
Xuexing Shi ◽  
Qian Tang ◽  
Dianming Jiang

Objective: The aim of the study was to investigate the mechanism by which p75 neurotrophin receptor (p75NTR) affects mitochondrial damage and neuronal apoptosis in spinal cord injury (SCI). Methods: After the establishment of SCI rat models, short hairpin (sh) RNA of p75NTR and control sh-RNA were injected into SCI rats, respectively. On days 1, 7 and 21 after SCI, the severity of SCI and cell apoptosis in SCI rats were determined as well as the recovery of hind limb performance and p75NTR expression. After spinal cord neurons were transfected with p75NTR overexpression plasmid or empty plasmid vector or cotransfected with overexpression plasmids of p75NTR and neurotrophic tyrosine receptor kinase3 (NTRK3), the expression levels of p75NTR and NTRK3 were quantified. Moreover, we detected the apoptosis and proliferation rates of the neurons in addition to the levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in the neurons. The binding between p75NTR and NTRK3 was confirmed via Co-immunoprecipitation (Co-IP). Results: The rat spinal cords in the Model group were notably damaged after SCI accompanied by increased apoptosis and decreased locomotor function. The expression of p75NTR was significantly upregulated after SCI. The aforementioned injuries were remarkably ameliorated in response to injection of sh-p75NTR. p75NTR overexpression induced mitochondrial damage and neuronal apoptosis in spinal cord neurons, while the promotive effects were perturbed by NTRK3 overexpression. Furthermore, p75NTR directly bound to and downregulated NTRK3. Conclusion: Both in vivo and in vitro experiments showed that p75NTR aggravates mitochondrial damage and neuronal apoptosis in SCI through downregulating NTRK3.


2021 ◽  
Author(s):  
Mark J Cumming ◽  
Julien Gibon ◽  
Wayne S Sossin ◽  
Philip A Barker

Tumor necrosis factor receptors (TNFRs) regulate a diverse array of biological functions, including adaptive immunity, neurodevelopment, and many others. Although TNFRs are expressed in all metazoan phyla, a coherent model of the molecular origins of mammalian TNFRs—and how they relate to TNFRs in other phyla—has remained elusive. To address this, we executed a large-scale, systematic Basic Local Alignment Search Tool (BLAST)-based approach to trace the evolutionary ancestry of all 29 human TNFRs. We discovered that all human TNFRs are descendants of a single pre-bilaterian TNFR with strong sequence similarity to the p75 neurotrophin receptor (p75NTR), which we designate as PITA for ‘ p75NTR is the TNFR Ancestor’ . A distinct subset of human TNFRs—including EDAR, XEDAR and TROY—share a unique history as descendants of EDAR-XEDAR-TROY (EXT), which diverged from PITA in a bilaterian ancestor.  Most PITA descendants possess a death domain (DD) within their intracellular domain (ICD) but EXTs do not. PITA descendants are expressed in all bilaterian phyla and Cnidaria, but not in non-planulozoan ParaHoxozoa, suggesting that PITA originated in an ancestral planulozoan. Drosophila melanogaster TNFRs (Wengen (Wgn) and Grindelwald (Grnd)) were identified as divergent PITA descendants, providing the first evolutionary link between this model TNFR system and the mammalian TNFR superfamily. This study reveals PITA as the ancestor to human and Drosophila TNFR systems and describes an evolutionary model that will facilitate deciphering TNF-TNFR functions in health and disease.


2021 ◽  
Vol 22 (24) ◽  
pp. 13260
Author(s):  
Klaudia Barabás ◽  
Julianna Kobolák ◽  
Soma Godó ◽  
Tamás Kovács ◽  
Dávid Ernszt ◽  
...  

Neurotrophin receptors such as the tropomyosin receptor kinase A receptor (TrkA) and the low-affinity binding p75 neurotrophin receptor p75NTR play a critical role in neuronal survival and their functions are altered in Alzheimer’s disease (AD). Changes in the dynamics of receptors on the plasma membrane are essential to receptor function. However, whether receptor dynamics are affected in different pathophysiological conditions is unexplored. Using live-cell single-molecule imaging, we examined the surface trafficking of TrkA and p75NTR molecules on live neurons that were derived from human-induced pluripotent stem cells (hiPSCs) of presenilin 1 (PSEN1) mutant familial AD (fAD) patients and non-demented control subjects. Our results show that the surface movement of TrkA and p75NTR and the activation of TrkA- and p75NTR-related phosphoinositide-3-kinase (PI3K)/serine/threonine-protein kinase (AKT) signaling pathways are altered in neurons that are derived from patients suffering from fAD compared to controls. These results provide evidence for altered surface movement of receptors in AD and highlight the importance of investigating receptor dynamics in disease conditions. Uncovering these mechanisms might enable novel therapies for AD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bangkun Yang ◽  
Lesheng Wang ◽  
Ying Nie ◽  
Wei Wei ◽  
Wenping Xiong

AbstractBrain-derived neurotrophic factor (BDNF) plays an important role in the pathophysiology of post-stroke depression (PSD). However, the precise function and potential mechanism of proBDNF, the precursor form of BDNF, are unknown. In our study, a PSD-like model was established by treating neuronal cells with oxygen-glucose deprivation and corticosterone. We found that the protein proBDNF levels were significantly higher in the cortex and hippocampus in the PSD group than in the control group, suggesting that proBDNF plays a role in the pathophysiology of PSD. Furthermore, we re-established the PSD-like cell model using recombinant p75 neurotrophin receptor (p75NTR) or silencing c-Jun N-terminal kinase (JNK), and found that the PSD-induced upregulation of proBDNF was inhibited by recombinant p75NTR and JNK silencing (siJNK), and increased cellular apoptosis. Moreover, the application of recombinant p75NTR and siJNK in the PSD-like cell model significantly reversed the expression of apoptosis-related and depression-related proteins and decreased cellular apoptosis. Our findings suggest that proBDNF is involved in neural plasticity in PSD in vitro. The RhoA-JNK signaling pathway is activated after proBDNF binds to the p75NTR receptor, followed by the expression of apoptosis-related proteins (PSD95, synaptophysin, and P-cofilin), which contribute to PSD progression. The mechanism might involve the promotion of cellular apoptosis and the inhibition of nerve synapses regeneration by proBDNF.


Author(s):  
Sachin S. Deshpande ◽  
Subash C. Malik ◽  
Pasquale Conforti ◽  
Jia-di Lin ◽  
Yu-Hsuan Chu ◽  
...  

AbstractStroke is the leading cause of adult disability. Endogenous neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to the brain repair process. However, molecular mechanisms underlying CNS disease-induced SVZ NSPC-redirected migration to the lesion area are poorly understood. Here, we show that genetic depletion of the p75 neurotrophin receptor (p75NTR−/−) in mice reduced SVZ NSPC migration towards the lesion area after cortical injury and that p75NTR−/− NSPCs failed to migrate upon BDNF stimulation in vitro. Cortical injury rapidly increased p75NTR abundance in SVZ NSPCs via bone morphogenetic protein (BMP) receptor signaling. SVZ-derived p75NTR−/− NSPCs revealed an altered cytoskeletal network- and small GTPase family-related gene and protein expression. In accordance, BMP-treated non-migrating p75NTR−/− NSPCs revealed an altered morphology and α-tubulin expression compared to BMP-treated migrating wild-type NSPCs. We propose that BMP-induced p75NTR abundance in NSPCs is a regulator of SVZ NSPC migration to the lesion area via regulation of the cytoskeleton following cortical injury.


Sign in / Sign up

Export Citation Format

Share Document