ht22 cells
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 162)

H-INDEX

26
(FIVE YEARS 7)

2022 ◽  
Vol 12 (5) ◽  
pp. 1046-1052
Author(s):  
Jianmin Zhang ◽  
Qianwen Zhu ◽  
Xingnan Wang ◽  
Jian Wang

Background: Previous studies have shown that Donepezil has therapeutic effects on vascular dementia (VD). PI3K/AKT involves in oxidative stress injury and cell apoptosis. This study investigated whether Donepezil affects the neurological function and apoptosis of VD mice via PI3K/AKT signaling. Methods: Mice were assigned into Sham group, VD group, VD+Donepezil groupfollowed by analysis of mice learning and memory ability by Water maze test, p-AKT expression by Western blot, Caspase-3 activity, MDA content, SOD activity and GSH-Px in hippocampus. HT22 cells were cultured and separated into control group, I-R group and I-R+Donepezil group followed by measuring p-AKT level, ROS content and apoptosis. Results: Learning and memory abilities of VD group mice were significantly decreased, Caspase-3 activity and MDA in brain tissue were significantly increased, along with decreased SOD activity, GSH-Px and p-AKT level. Donepezil treatment can significantly improve VD mice learning and memory ability, reduce Caspase-3 activity and MDA in brain tissue, increase SOD activity, GSH-Px and p-AKT level. In vitro, I-R treatment significantly induced apoptosis of HT22 cells, increased ROS production and decreased p-AKT level. Donepezil treatment could up-regulate p-AKT in HT22 cells and reduce apoptosis and ROS production in HT22 cells. Conclusion: Donepezil improves the function of brain nerve in VD mice through regulating PI3K/AKT pathway, thus reducing oxidative stress injury and apoptosis of brain nerve cells.


2022 ◽  
Vol 23 (2) ◽  
pp. 757
Author(s):  
Dahae Lee ◽  
Hyejung Jo ◽  
Cheolhyeon Go ◽  
Yoojin Jang ◽  
Naghyung Chu ◽  
...  

Interleukin (IL)-22 is a potent mediator of inflammatory responses. The IL-22 receptor consists of the IL-22Rα and IL-10Rβ subunits. Previous studies have shown that IL-22Rα expression is restricted to non-hematopoietic cells in the skin, pancreas, intestine, liver, lung, and kidney. Although IL-22 is involved in the development of inflammatory responses, there have been no reports of its role in brain inflammation. Here, we used RT-PCR, Western blotting, flow cytometry, immunohistochemical, and microarray analyses to examine the role of IL-22 and expression of IL-22Rα in the brain, using the microglial cell line, hippocampal neuronal cell line, and inflamed mouse brain tissue. Treatment of BV2 and HT22 cells with recombinant IL-22 increased the expression levels of the pro-inflammatory cytokines IL-6 and TNF-α, as well as cyclooxygenase (COX)-2 and prostaglandin E2. We also found that the JNK and STAT3 signaling pathways play an important role in IL-22-mediated increases in inflammatory mediators. Microarray analyses revealed upregulated expression of inflammation-related genes in IL-22-treated HT22 cells. Finally, we found that IL-22Rα is spontaneously expressed in the brain and is upregulated in inflamed mouse brain. Overall, our results demonstrate that interaction of IL-22 with IL-22Rα plays a role in the development of inflammatory responses in the brain.


Inflammation ◽  
2022 ◽  
Author(s):  
Lian Zeng ◽  
Jiafeng He ◽  
Chenguang Liu ◽  
Fuyu Zhang ◽  
Zhen Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Lihui Wang ◽  
Jinjin Cao ◽  
Qianqian Xu ◽  
Xiaomei Lu ◽  
Xin Yang ◽  
...  

Diabetes mellitus (DM) is an independent risk factor for cognitive impairment. Although the etiology of diabetic cognitive impairment is complex and multifactorial, the hippocampus neuronal apoptosis is recognized as a main cause of diabetes-induced cognitive impairment. 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) was purified from the roots of Averrhoa carambola L. Previous research demonstrated that DMDD was safe and effective in delaying some diabetic complications. However, the efficacy of DMDD to ameliorate diabetic cognitive impairment in type 2 diabetes mice has not been reported. In the present study, the behavioral evaluation was performed by Y maze and novel object recognition in db/db mice. Gene expression profiles were detected using mouse lncRNA microarray analysis in the hippocampi of db/db mice. Changes in the neurodegeneration-associated proteins and the apoptosis-related proteins were determined in both db/db mice and high glucose-treated HT22 cells by Western blotting. We observed that DMDD treatment significantly ameliorated the spatial working memory and object recognition memory impairment in db/db mice. Further study showed that neurodegeneration-associated protein tau was decreased after DMDD treatment in the hippocampi of db/db mice. Eleven lncRNAs and four mRNAs including pro-apoptotic gene Hif3a were significantly differently expressed after DMDD treatment in the hippocampi of db/db mice. The expression of Hif3a, cleaved parp, and caspase 3 proteins was significantly increased in the hippocampi of diabetic db/db mice compared with db/m control mice and then decreased after DMDD treatment. Similar beneficial effects of DMDD were observed in HG-treated HT22 cells. These data indicate that DMDD can alleviate cognitive impairment by inhibiting neuronal apoptosis through decreasing the expression of pro-apoptotic protein Hif3a. In conclusion, our study suggests that DMDD has great potential to be a new preventive and therapeutic compound for diabetic cognitive impairment.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dong Wang ◽  
Bibo Gao ◽  
Tao Yang ◽  
Huiying Sun ◽  
Xiaoping Ran ◽  
...  

Notoginsenoside R1 (NGR1) is an active compound isolated from Panax notoginseng. Despite the NGR1 having been used as a traditional medicine, little is known about the neuroprotective effects. In this study, we investigate the protective effects of NGR1 against glutamate-induced cytotoxicity in HT22 cells and its possible molecular mechanism. We assessed the toxicity of NGR1 and the protective activity by MTT assay. The levels of oxidative stress indices superoxide dismutase (SOD), glutathione (GSH), and mitochondrial membrane potential (MMP) were measured by the kits. The levels of reactive oxygen species (ROS) and Ca2+ concentration were measured by flow cytometry. Furthermore, we determined the expression of mitochondrial dysfunction related protein PINK1, Parkin, silent mating type information regulation 2 homolog-1 (sirtuin 1; SIRT1), and Wnt/β-catenin by Western blotting. Here, we discovered that glutamate treatment led to cell viability loss, apoptosis facilitation, Ca2+ upregulation, MMP fluorescence intensity downregulation, and ROS generation of HT22 cells. In parallel, expression of Parkin was declined by glutamate. While, NGR1 treatment alleviated all the above phenomena. We further clarified that NGR1 alleviated glutamate-induced oxidative stress, apoptosis, and mitochondrial dysfunction by upregulating SIRT1 to activate Wnt/β-catenin pathways. These findings demonstrate that NGR1 alleviated glutamate-induced cell damage, and NGR1 may play a protective role in neurological complications.


2021 ◽  
Author(s):  
Hui Ding ◽  
Jing-Yan Wang ◽  
Yuan-Hai Li ◽  
Yan Huang

Abstract Background: With the development of society, Neurodegenerative disease (ND), such as alzheimer's disease, is more and more important to the researchers. Metal iron may play a crucial role in this disease, so our research constructed the iron overloading model in nerve cells, induce the ferroptosis, simulate the state of the nerve in the body, and used the anesthesia Dexmedetomidine (Dex), and study whether the Dex can inhibit the ferroptosis and reduce the ND.Methods: Cell proliferation kit CCK8 and PI/Hoechst fluorescence double staining were used to detect the proliferation and apoptosis of HT22 cells. Western blot (WB) was used to detect the expression of PTGS2 and ACSL4, pathway proteins mTOR, TFR1. ROS content in HT22 cells was determined by DHE fluorescence probe. Lipid Peroxidation in nerve cells was detected by MDA Assay. Mito-ferrorange fluorescent probe was used to detect the level of ferrous ions in cells to demonstrate that ferroptosis occurred in nerve cells and Dex could protect nerve cells from ferroptosis.Results: Dex inhibits ferroptosis by regulating the mTOR-TFR1 pathway, reducing lipid peroxidation, intracellular reactive oxygen accumulation (ROS), reducing iron ions, and alleviating mitochondrial damage. mTOR is a well-known autophagy target and has been found to be closely related to ferroptosis. Dex activates the mTOR pathway, inhibits iron entry into the cell, reduces iron influx, and prevents ferroptosis by fenton reaction between excessive iron and lipids in the cell.Conclusion: Dex protects nerve cells from ferroptosis by regulating the mTOR-TFR1 pathway.


2021 ◽  
Author(s):  
Zhuochen Lyu ◽  
Shiyuan Luo ◽  
Yinjiao Li ◽  
Liangfang Yao ◽  
Feng Chen ◽  
...  

Abstract Background: Sepsis-associated encephalopathy (SAE) is one of the severe central nervous system complications. Oxidative stress and synaptic dysfunction were involved in cognitive impairment induced by SAE. The mitochondrial nicotinamide adenine dinucleotide (NAD+) dependent deacetylase, sirtuin3 (SIRT3), plays a critical role in regulating mitochondrial function. The aim of this study was to evaluate the effect of SIRT3 in cognitive dysfunction induced by SAE.Methods: Mice were treated with lipopolysaccharide (LPS, 10 mg/kg, i.p.). Contextual and cue memory were evaluated by fear conditioning test in wild-type (WT) and SIRT3-deficient (SIRT3-/-) mice. Synapse-associated proteins and mitochondrial apoptosis-associated protein were examined by western blotting. In vitro studies, acetylation levels of cyclophilin D (CypD) were detected with different SIRT3 deacetylase activity in HT22 cells after LPS-induced microglia supernatant (Mi-sup) exposure. Oxidative stress was detected by reactive oxygen species (ROS) staining, and mitochondrial membrane potential (MMP) was detected by JC-1 staining, and mitochondrial membrane permeability transition pore (MPTP) opening was detected by Calcein and Co2+ staining. Furthermore, the phosphorylation levels of mitochondrial p66Shc and JNK were evaluated by western blotting.Results: SIRT3 expression was diminished in hippocampus of mice after LPS treatment. SIRT3-deficiency contributed to more severe contextual memory loss and synaptic dysfunction, decreased ratio of Bcl-2/Bax and increased Cyt C release to cytoplasm in hippocampus compared with wild-type controls. In HT22 cells, lysine acetylation levels of CypD were significantly increased after Mi-sup exposure and further enhanced with 3-TYP (SIRT3 deacetylation inhibitor) pretreatment, in association with the accumulation of ROS, declined MMP and increased MPTP opening, as well as the increased mitochondrial Cyt C release and phosphorylation levels of mitochondrial JNK and p66Shc-Ser36. SIRT3 overexpression restored CypD lysine acetylation levels and MPTP opening in HT22 cells after Mi-sup exposure and reduced mitochondrial JNK and p66Shc activation. Conclusions: Taken together, our results showed that SIRT3-mediated CypD deacetylation was involved in LPS-induced hippocampal synaptic dysfunction, via ROS accumulation, declined MMP, increased MPTP opening, mitochondrial Cyt C release and mitochondrial apoptosis of hippocampal neuron via JNK/p66Shc pathway. Our results revealed that SIRT3 may be a promising therapeutic and diagnostic target for cognitive dysfunction induced by SAE.


2021 ◽  
pp. 1-11
Author(s):  
Yanhu Ge ◽  
Duomao Lin ◽  
Boqun Cui ◽  
Liang Zhang ◽  
Shurong Li ◽  
...  

<b><i>Introduction:</i></b> Isoflurane (ISO) may cause neuronal apoptosis and synaptic disorder during development, and damage long-term learning and memory function. This observation aimed to study the function of H19 in vitro and in vivo tests and the further mechanism was identified. <b><i>Methods:</i></b> ISO cell models and rat models were established and reactive oxygen species (ROS) identified. The viability and apoptosis of HT22 cells were detected by the MTT and flow cytometer. Morris water maze test was conducted to analyze the neurotoxicity of ISO on spatial learning and memory ability. Quantitative PCR was the method to verify the expression of H19. The concentration of inflammatory indicators was identified by enzyme-linked immunosorbent assay. <b><i>Results:</i></b> 1.5% and 2% ISO led to the neurotoxicity of HT22 cells and increased expression of H19. Silenced H19 meliorated these adverse impacts of ISO. Interference of H19 exerted neuroprotective roles by repressing modified neurological severity score, inhibiting escape latency, elevating distance and time of target area, and controlling ROS and inflammation. MiR-17-5p might be a promising competing endogenous RNA of H19. The expression of miR-17-5p was reduced in the ISO group and reversed by the absence of H19. <b><i>Conclusion:</i></b> Our results of in vitro and in vivo assay indicated that the absence of HT22 is a neuroprotective regulator of cognition and inflammation by accumulating miR-17-5p.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Malk Eun Pak ◽  
You-Chang Oh ◽  
Yeo Jin Park ◽  
Jae Kwang Kim ◽  
Min-Gyeong Shin ◽  
...  

Since ancient times, Banhasasim-tang (BHS) has been used to treat functional dyspepsia in East Asia. Here, we aimed to determine the protective action of BHS on hippocampal neurons against oxidative stress. We investigated the functional effect of BHS on a scopolamine-induced mouse model, and molecular analysis was performed in glutamate-induced HT22 cells. We observed that BHS administration ameliorated memory dysfunction in scopolamine-treated mice. BHS administration also increased neuronal survival and acetylcholine activity and phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus of mice. In hippocampal cells, BHS treatment rescued glutamate-induced cytotoxicity, apoptosis, and oxidative stress. We observed an increase of HO-1 and a decrease of Nrf2 protein expression in glutamate-induced oxidative stress; however, the expression level of these proteins was significantly rescued by BHS treatment. BHS treatment also regulated phosphorylation of p38, p53, ERK, and CREB. Therefore, our data indicated that BHS may reduce oxidative stress through regulation of ERK-CREB and p38-p53 signaling in the hippocampus, resulting in decreased neuronal damage and improved memory in rodent models of neurodegenerative disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bin Wang ◽  
Ping Yu ◽  
Wei Lin ◽  
Zhaohui Zhai

Objectives. To explore the role of microRNA-21-5p (miR-21-5p) in hypoxia/reoxygenation- (H/R-) induced HT22 cell damage. Methods. The hypoxia/reoxygenation (H/R) model was established in mouse neuronal cells HT22. Cell Counting Kit-8 (CCK-8) and qRT-PCR were used to determine the effects of H/R treatment on cell viability and miR-21-5p expression. HT22 cells were transfected with miR-21-5p mimic or negative control (NC) followed by the induction of H/R; cell viability, apoptosis, and SOD, MDA, and LDH activities were detected. Besides, the apoptosis-related proteins including BAX, BCL2, cleaved caspase-3, and caspase-3 as well as proteins of EGFR/PI3K/AKT signaling pathways were measured by Western blot. To verify the target relation between cytoplasmic polyadenylation element binding protein 3 (CPEB3) and miR-21-5p, luciferase reporter gene experiment was performed. After cotransfection with miR-21-5p mimic and CPEB3 plasmids, the reversal effects of CPEB3 on miR-21-5p in H/R damage were studied. Results. H/R treatment could significantly reduce the cell viability ( P < 0.05 ) and miR-21-5p levels ( P < 0.05 ) in HT22 cells. After overexpressing miR-21-5p, cell viability was increased ( P < 0.05 ) under H/R treatment, and the apoptosis rate and the levels of apoptosis-related proteins were suppressed (all P < 0.05 ). Furthermore, SOD activity was increased ( P < 0.05 ), while MDA and LDH activity was decreased (both P < 0.05 ). Besides, miR-21-5p could restore the activation of the EGFR/PI3K/AKT signaling pathway inhibited by H/R treatment (all P < 0.05 ). The luciferase reporter gene experiment verified that CPEB3 is the target of miR-21-5p ( P < 0.05 ). When coexpressing miR-21-5p mimic and CPEB3 in the cells, the protective effects of miR-21-5p under H/R were reversed (all P < 0.05 ), and the activation of the EGFR/PI3K/AKT pathway was also inhibited (all P < 0.05 ). Conclusion. This study showed that miR-21-5p may regulate the EGFR/PI3K/AKT signaling pathway by targeting CPEB3 to reduce H/R-induced cell damage and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document