reinforced concrete column
Recently Published Documents


TOTAL DOCUMENTS

420
(FIVE YEARS 132)

H-INDEX

15
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Huynh-Xuan Tin ◽  
Ngo-Thanh Thuy ◽  
Soo-Yeon Seo

Various researches have been performed to find an effective confining method using FRP sheet in order to improve the structural capacity of reinforced concrete column. However, most of these researches were undertaken for the columns subjected to concentric compressive load or fully confined RC columns. To date, it remains hard to find studies on partially FRP-confined RC columns under eccentric load. In this manner, an experimental investigation was carried out to assess the performance of rectangular RC column with different patterns of CFRP-wrap subject to eccentric loads in this paper. The experiment consists of fourteen mid-scale rectangular RC columns of 200 mm × 200 mm × 800 mm, including five controlled columns and nine CFRP-strengthened ones. All CFRP-strengthened columns were reinforced with one layer of vertical CFRP sheet with the main fiber along the axial axis at four sides, then divided into three groups according to confinement purpose, namely unconfined, partially CFRP-confined, and fully CFRP-confined group. Two loading conditions, namely uniaxially and biaxially eccentric loads, are considered as one of the test parameters. From the test of uniaxial eccentric load, partial and full CFRP-wraps provided 19% and 33% increased load-carrying capacity at an eccentricity-to-column thickness ratio (e/h) of 0.125, respectively, compared to controlled columns, and 8% and 11% at e/h = 0.25, respectively. For the partially CFRP-confined columns subjected to biaxial eccentric load with e/h = 0.125 and 0.25, the load-carrying capacities were improved by 19% and 31%, respectively. This means that the partial confinement with CFRP effectively improves the load-carrying capacity at larger biaxial eccentric load. It was found that the load-carrying capacity could be properly predicted by using code equations of ACI 440.2R-17 and Fib Bulletin 14 Guideline for the full CFRP-confined or partially CFRP-confined columns under uniaxial load. For partially CFRP-confined columns under biaxial loading, however, the safety factors using the Fib calculation process were 20% to 31% lower than that of uniaxially loaded columns.


2021 ◽  
Vol 249 ◽  
pp. 113154
Author(s):  
Zoran Bonić ◽  
Elefterija Zlatanović ◽  
Stanko Brčić ◽  
Predrag Blagojević ◽  
Nikola Romić ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bedaso Ahmed ◽  
Kefiyalew Zerfu ◽  
Elmer C. Agon

Slender reinforced concrete column may fail in material failure or instability failure. Instability failure is a common problem which cannot be analyzed with first-order analysis. So, second-order analysis is required to analyze instability failure of slender RC column. The main objective of this study was to construct uniaxial interaction diagram for slender reinforced concrete column based on nonlinear finite element analysis (FEA) software. The key parameters which were studied in this study were eccentricity, slenderness ratio, steel ratio, and shape of the column. Concrete damage plasticity (CDP) was utilized in modeling the concrete. Material nonlinearity, geometric nonlinearity, effect of cracking, and tension stiffening effect were included in the modeling. The results reveal that, as slenderness ratio increases, the balanced moment also increases, but the corresponding axial load was decreased. However, increasing the amount of steel reinforcement to the column increases the stability of the column and reduces the effect of slenderness ratio. Also, the capacity of square slender RC column is larger than rectangular slender RC column with equivalent cross section. However, the result is close to each other as slenderness ratio increased. Finally, validation was conducted by taking a benchmark experiment, and it shows that FEA result agrees with the experimental by 85.581%.


Author(s):  
Nia Dwi Puspitasari ◽  
Aulia Dewi Fatikasari

Stress-strain relationship is the main parameter to identify the strength, ductility and behavior of the structure. Various constitutive models were created in order to simplify the analytical approach of concrete behavior. In this paper, the behavior of reinforced concrete column is modeled using Attard and Setunge�s (1996) and Mander�s (1988) stress-strain constitutive model. The appropriate model for reinforced concrete column was determined based on the existing experimental data. Two-dimensional simulation of reinforced concrete column using fiber-based cross-sectional analysis in MATLAB is sighted. And the performance of the reinforced concrete column from the experimental data is compared with the analysis result from the simulation. There are two comparation methods used in this research. The first method is to compare the linear regression with the reference line. The smallest degree between the linear regression and the referrence line is expected. The second method is to compare the Root Mean Square Defiation (RMSD) value. The smallest RMSD value is expected to get the most suitable constitutive model compared to the experimental data. From the computational process, it was found that Mander�s Constitutive model is preferaed to be used in further analysis problem concerning reinforced concrete column


Sign in / Sign up

Export Citation Format

Share Document