sisko fluid
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 35)

H-INDEX

22
(FIVE YEARS 5)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jifeng Cui ◽  
Umer Farooq ◽  
Ahmed Jan ◽  
Murtada K. Elbashir ◽  
Waseem Asghar Khan ◽  
...  

The practice of flowing effort is participating in various industries especially in nutrition productions all around the world. These fluids practices are utilized extensively in nutrition handling productions by making use of sticky liquids to produce valuable food manufactured goods in bulk. Nevertheless, such productions ought to guarantee that involved equipment such as pipelines are maintained clean as well as are cleared out for the efficient movement of fluids. The nonsimilar characteristics of involuntary convection from circular cylinder stretching in the axial direction subjected to an external flow of Sisko fluid characterized by the freely growing boundary layers (BL) are presented in this research. A circular cylinder is submerged in a stationary fluid. The axial stretching of the cylinder causes external fluid flow. The magnetic force of strength ″ B 0 ″ is enforced in the transverse direction. Because of the fluid's high viscosity, frictional heating due to viscous dissipation is quite significant. The flow is three dimensional but with no circumferential variations. The governing equations for axisymmetric flow that include the mass balance, x -momentum, and heat equation are modeled through conservation laws. The dimensionless system is developed by employing appropriate nonsimilar transformations. The numerical analyses are presented by adapting local nonsimilarity via finite-difference (FDM)-based MATLAB algorithm bvp4c. The characteristics of dimensionless numbers are determined by graphs that are plotted on momentum and heat equations. The nonsimilar simulations have been compared with the existing local similar solutions. Fluid velocity is increased as the material and curvature parameters are increased, resulting in improved heat transfer. The deviation in skin friction and local Nusselt number against the various dimensionless numbers is also analyzed.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 967
Author(s):  
Luthais B. McCash ◽  
Iffat Zehra ◽  
Abdou Al-Zubaidi ◽  
Mohammad Amjad ◽  
Nadeem Abbas ◽  
...  

In this study, a modified Sisko fluid with Buongiorno model effects over a curved surface was considered. The MHD was applied normally to the flow direction, and the effects of chemical reacted and active energy at the curved surface is also discussed. We chose this pertinent non-Newtonian fluid model since it best represents blood composition, and thus helps us venture into complex blood flow problems. Since the flow is discharged over a curved shape, we therefore commissioned curvilinear coordinates to best portray our envisaged problem. We were also required to define various sundry parameters to make our mathematical equations easily solvable. Mathematical modelling was completed by considering traditional assumptions, including boundary layer approximation. Numerical simulation was conducted using MATLAB solver bvp4c. Several numerical tests were conducted to select the best blend of the linked parameters. We noticed thermal flux upsurged when the chemical reaction parameter was increased with the magnetic indicator parameter caused the flow to slow down, while an increasing amount of activation energy enhanced the concentration of the fluid. The numerical results and impacts of assorted parameters on different profiles are elaborated with the help of graphs and a table.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Naveed Imran ◽  
Maryiam Javed

PurposeParticular attention is given to the viscous damping force parameter, stiffness parameter, rigidity parameter, and Brinkman number and plotted their graph for thermal distribution, momentum profile and concentration profile.Design/methodology/approachIn the field of engineering, biologically inspired propulsion systems are getting the utmost importance. Keeping in view their developmental progress, the present study was made. The theoretical analysis explores the effect of heat and mass transfer on non-Newtonian Sisko fluid with slip effects and transverse magnetic field in symmetric compliant channel. Using low Reynolds number, so that the authors neglect inertial forces and for keeping the pressure constant during the flow, channel height is used largely as compared to the ratio of wavelength. The governing equations of fluid flow problem are solved using the perturbation analysis.FindingsResults are considered for thickening, thinning and viscous nature of fluid models. It is found that the velocity distribution profile is boosted for increasing values of the Sisko fluid parameter and porous effect, while thermal profile is reducing for Brinkman number (viscous dissipation effects) for all cases. Moreover, shear-thicken and shear-thinning behavior of non-Newtonian Sisko fluid is also explained through the graphs.Originality/valueHear-thicken and shear-thinning behavior of non-Newtonian Sisko fluid is also explained through the graphs.


Author(s):  
Jawaher Lafi Aljohani ◽  
Eman Salem Alaidarous ◽  
Muhammad Asif Zahoor Raja ◽  
Muhammed Shabab Alhothuali ◽  
Muhammad Shoaib

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 921
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Anuar Ishak

The radiation and magnetic field effects of nanofluids play a significant role in biomedical engineering and medical treatment. This study investigated the performance of gold particles in blood flow (Sisko fluid flow) over a porous, slippery, curved surface. The partial slip effect was considered to examine the characteristics of nanofluid flow in depth. The foremost partial differential equations of the Sisko model were reduced to ordinary differential equations by using suitable variables, and the boundary value problem of the fourth-order (bvp4c) procedure was applied to plot the results. In addition, the effects of the parameters involved on temperature and velocity were presented in light of the parametric investigation. A comparison with published results showed excellent agreement. The velocity distribution was enhanced due to the magnetic field, while the temperature increased due to the effects of a magnetic field and radiation, which are effective in therapeutic hyperthermia. In addition, the nanoparticle suspension showed increased temperature and decelerated velocity.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 335
Author(s):  
Hu Ge-JiLe ◽  
Hassan Waqas ◽  
Sami Ullah Khan ◽  
Muhammad Ijaz Khan ◽  
Shahid Farooq ◽  
...  

The progressive and enhanced thermal mechanisms of nanoparticles has motivated researchers to give attention to this topic in recent years. The synthesizing and versatile applications of such materials include cooling and heating controlling processes, solar systems, energy production, nanoelectronics, hybrid-powered motors, cancer treatments, and renewable energy systems. Moreover, the bioconvection of nanofluids allows for some motivating applications in this era of bioengineering and biotechnology, such as biofuels, biosensors, and enzymes. With these interesting motivations and applications, this study elucidated upon the three-dimensional bioconvection flow of a Sisko fluid (base fluid) in the presence of a nanofluid over a stretched surface. The additional thermal features of radiation were also incorporated to modify the analysis. The rheological features of shear thinning and shear thickening that are associated with the Sisko nanofluid were comprehensively studied. The problem was formulated using highly nonlinear and coupled differential equations, which were numerically simulated via a shooting scheme. The salient physical applications of flow parameters were graphically underlined in view of shear-thinning and shear-thickening scenarios. The results showed that a decrease in velocity in the presence of buoyancy ratio forces was more conducive to the shear-thinning phenomenon. The increase in temperature profile due the thermal Biot number and surface heating source parameter seemed to be more inflated in the shear-thinning scenario. A lower motile microorganism profile was noted for the bioconvection Lewis number.


Sign in / Sign up

Export Citation Format

Share Document