brewery wastewater
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 87)

H-INDEX

34
(FIVE YEARS 7)

2022 ◽  
Vol 14 (2) ◽  
pp. 955
Author(s):  
Salma Elhenawy ◽  
Majeda Khraisheh ◽  
Fares AlMomani ◽  
Mohammad Al-Ghouti ◽  
Mohammad K. Hassan

Due to fossil fuel depletion and the rapid growth of industry, it is critical to develop environmentally friendly and long-term alternative energy technologies. Microbial fuel cells (MFCs) are a powerful platform for extracting energy from various sources and converting it to electricity. As no intermediate steps are required to harness the electricity from the organic substrate’s stored chemical energy, MFC technology offers a sustainable alternative source of energy production. The generation of electricity from the organic substances contained in waste using MFC technology could provide a cost-effective solution to the issue of environmental pollution and energy shortages in the near future. Thus, technical advancements in bioelectricity production from wastewater are becoming commercially viable. Due to practical limitations, and although promising prospects have been reported in recent investigations, MFCs are incapable of upscaling and of high-energy production. In this review paper, intensive research has been conducted on MFCs’ applications in the treatment of wastewater. Several types of waste have been extensively studied, including municipal or domestic waste, industrial waste, brewery wastewater, and urine waste. Furthermore, the applications of MFCs in the removal of nutrients (nitrogen and sulphates) and precious metals from wastewater were also intensively reviewed. As a result, the efficacy of various MFCs in achieving sustainable power generation from wastewater has been critically addressed in this study.


2021 ◽  
pp. 126435
Author(s):  
Siming Chen ◽  
William Arnold ◽  
Natasha Wright ◽  
Kuang Zhu ◽  
Olutooni Ajayi ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Marc Sauchelli Toran ◽  
Patricia Fernández Labrador ◽  
Juan Francisco Ciriza ◽  
Yeray Asensio ◽  
André Reigersman ◽  
...  

Water reuse is a safe and often the least energy-intensive method of providing water from non-conventional sources in water stressed regions. Although public perception can be a challenge, water reuse is gaining acceptance. Recent advances in membrane technology allow for reclamation of wastewater through the production of high-quality treated water, including potable reuse. This study takes an in-depth evaluation of a combination of membrane-based tertiary processes for its application in reuse of brewery wastewater, and is one of the few studies that evaluates long-term membrane performance at the pilot-scale. Two different advanced tertiary treatment trains were tested with secondary wastewater from a brewery wastewater treatment plant (A) ultrafiltration (UF) and reverse osmosis (RO), and (B) ozonation, coagulation, microfiltration with ceramic membranes (MF) and RO. Three specific criteria were used for membrane comparison: 1) pilot plant optimisation to identify ideal operating conditions, 2) Clean-In-Place (CIP) procedures to restore permeability, and 3) final water quality obtained. Both UF and Micro-Filtration membranes were operated at increasing fluxes, filtration intervals and alternating phases of backwash (BW) and chemically enhanced backwash (CEB) to control fouling. Operation of polymeric UF membranes was optimized at a flux of 25–30 LMH with 15–20 min of filtration time to obtain longer production periods and avoid frequent CIP membrane cleaning procedures. Combination of ozone and coagulation with ceramic MF membranes resulted in high flux values up to 120 LMH with CEB:BW ratios of 1:4 to 1:10. Coagulation doses of 3–6 ppm were required to deal with the high concentrations of polyphenols (coagulation inhibitors) in the feed, but higher concentrations led to increasing fouling resistance of the MF membrane. Varying the ozone concentration stepwise from 0 to 25 mg/L had no noticeable effect on coagulation. The most effective cleaning strategy was found to be a combination of 2000 mg/L NaOCl followed by 5% HCl which enabled to recover permeability up to 400 LMH·bar−1. Both polymeric UF and ceramic MF membranes produced effluents that fulfil the limits of the national regulatory framework for reuse in industrial services (RD 1620/2007). Coupling to the RO units in both tertiary trains led to further water polishing and an improved treated water quality.


Author(s):  
J. Mary Sheela ◽  
K. Divya ◽  
S. Premina

Amylase enzymes are starch degrading enzymes and have received a great deal of attention due to their perceived technology importance and economic benefit. Amylase enzymes are considered important enzymes used in starch processing industries for the hydrolysis of polysaccharides like starch into simple sugar constituents. This enzyme is also involved in the commercial production of glucose. Solid-state cultivation and submerged cultivation have tremendous potentials for enzyme amylase production by using different solid substrates like rice bran, wheat bran, coconut oil cake, and groundnut oil cake which are rich in starch. These agro-industrial wastes are considered cheap raw materials for the production of amylase. Wastewater from the industry like brewery can also be used as a liquid substrate for submerged cultivation. It may have the possibility of depurination of wastewater. In the present study, Aspergillus niger and Penicillium species were isolated and their amylase activity was determined by the starch hydrolysis method. Enzyme production was done by using coconut oil cake as a substrate for solid-state fermentation and brewery wastewater as a substrate for submerged fermentation. The enzyme produced by the organisms was extracted and enzyme assay was done by the Dinitrisalicilic method (DNS method). The protein estimation was done by Lowry Folin’s method. The qualitative assay was carried out by performing Gas Chromatography-Mass Spectroscopy (GC-MS).


Sign in / Sign up

Export Citation Format

Share Document