martian surface
Recently Published Documents


TOTAL DOCUMENTS

498
(FIVE YEARS 133)

H-INDEX

48
(FIVE YEARS 4)

2022 ◽  
Vol 35 (2) ◽  
Author(s):  
Blake C. Stewart ◽  
Haley R. Doude ◽  
Terry L. Taylor ◽  
Morgan B. Abney ◽  
Hongjoo Rhee

2022 ◽  
Author(s):  
Samuel W. Albert ◽  
Hanspeter Schaub ◽  
Robert D. Braun
Keyword(s):  

2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Kazunori Ogohara ◽  
Hiromu Nakagawa ◽  
Shohei Aoki ◽  
Toru Kouyama ◽  
Tomohiro Usui ◽  
...  

AbstractJapan Aerospace Exploration Agency (JAXA) plans a Phobos sample return mission (MMX: Martian Moons eXploration). In this study, we review the related works on the past climate of Mars, its evolution, and the present climate and weather to describe the scientific goals and strategies of the MMX mission regarding the evolution of the Martian surface environment. The MMX spacecraft will retrieve and return a sample of Phobos regolith back to Earth in 2029. Mars ejecta are expected to be accumulated on the surface of Phobos without being much shocked. Samples from Phobos probably contain all types of Martian rock from sedimentary to igneous covering all geological eras if ejecta from Mars could be accumulated on the Phobos surface. Therefore, the history of the surface environment of Mars can be restored by analyzing the returned samples. Remote sensing of the Martian atmosphere and monitoring ions escaping to space while the spacecraft is orbiting Mars in the equatorial orbit are also planned. The camera with multi-wavelength filters and the infrared spectrometer onboard the spacecraft can monitor rapid transport processes of water vapor, dust, ice clouds, and other species, which could not be traced by the previous satellites on the sun-synchronous polar orbit. Such time-resolved pictures of the atmospheric phenomena should be an important clue to understand both the processes of water exchange between the surface/underground reservoirs and the atmosphere and the drivers of efficient material transport to the upper atmosphere. The mass spectrometer with unprecedented mass resolution can observe ions escaping to space and monitor the atmospheric escape which has made the past Mars to evolve towards the cold and dry surface environment we know today. Together with the above two instruments, it can potentially reveal what kinds of atmospheric events can transport tracers (e.g., H2O) upward and enhance the atmospheric escape. Graphical Abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Javier Martín‐Torres ◽  
María‐Paz Zorzano‐Mier ◽  
Erik Nyberg ◽  
Abhilash Vakkada-Ramachandran ◽  
Anshuman Bhardwaj

Tribocorrosion is a degradation phenomenon of material surfaces subjected to the combined action of mechanical loading and corrosion attack caused by the environment. Although corrosive chemical species such as materials like chloride atoms, chlorides, and perchlorates have been detected on the Martian surface, there is a lack of studies of its impact on materials for landed spacecraft and structures that will support surface operations on Mars. Here, we present a series of experiments on the stainless-steel material of the ExoMars 2020 Rosalind Franklin rover wheels. We show how tribocorrosion induced by brines accelerates wear on the materials of the wheels. Our results do not compromise the nominal ExoMars mission but have implications for future long-term surface operations in support of future human exploration or extended robotic missions on Mars.


2021 ◽  
Author(s):  
Adrian Broz ◽  
Joanna Clark ◽  
Brad Sutter ◽  
Doug Ming ◽  
Valerie Tu ◽  
...  

Ancient (4.1-3.7-billion-year-old) layered sedimentary rocks on Mars are rich in clay minerals which formed from aqueous alteration of the Martian surface. Many of these sedimentary rocks appear to be composed of vertical sequences of Fe/Mg clay minerals overlain by Al clay minerals that resemble paleosols (ancient, buried soils) from Earth. The types and properties of minerals in paleosols can be used to constrain the environmental conditions during formation to better understand weathering and diagenesis on Mars. This work examines the mineralogy and diagenetic alteration of volcaniclastic paleosols from the Eocene-Oligocene (43-28 Ma) Clarno and John Day Formations in eastern Oregon as a Mars-analog site. Here, paleosols rich in Al phyllosilicates and amorphous colloids overlie paleosols with Fe/Mg smectites that altogether span a sequence of ~500 individual profiles across hundreds of meters of vertical stratigraphy. Samples collected from three of these paleosol profiles were analyzed with visible/near-infrared (VNIR) spectroscopy, X-ray diffraction (XRD), and evolved gas analysis (EGA) configured to operate like the SAM-EGA instrument onboard Curiosity Mars Rover. Strongly crystalline Al/Fe dioctahedral phyllosilicates (montmorillonite and nontronite) were the major phases identified in all samples with all methods. Minor phases included the zeolite mineral clinoptilolite, as well as andesine, cristobalite, opal-CT and gypsum. Evolved H2O was detected in all samples and was consistent with adsorbed water and the dehydroxylation of a dioctahedral phyllosilicate, and differences in H2O evolutions between montmorillonite and nontronite were readily observable. Detections of hematite and zeolites suggested paleosols were affected by burial reddening and zeolitization, but absence of illite and chlorite suggest that potash metasomatism and other, more severe diagenetic alterations had not occurred. The high clay mineral content of the observed paleosols (up to 95 wt. %) may have minimized diagenetic alteration over geological time scales. Martian paleosols rich in Al and Fe smectites may have also resisted severe diagenetic alteration, which is favorable for future in-situ examination. Results from this work can help distinguish paleosols and weathering profiles from other types of sedimentary rocks in the geological record of Mars.


Author(s):  
Christina M. Johnson ◽  
Haley O. Boles ◽  
LaShelle E. Spencer ◽  
Lucie Poulet ◽  
Matthew Romeyn ◽  
...  

Bioregenerative life-support systems for space have been investigated for 60 years, and plants and other photosynthetic organisms are central to this concept for their ability to produce food and O2, remove CO2, and help recycle wastewater. Many of the studies targeted larger scale systems that might be used for planetary surface missions, with estimates ranging from about 40 to 50 m2 (or more) of crop growing area needed per person. But early space missions will not have these volumes available for crop growth. How can plants be used in the interim, where perhaps <5 m2 of growing area might be available? One option is to grow plants as supplemental, fresh foods. This could improve the quality and diversity of the meals on the International Space Station or on the Lunar surface, and supply important nutrients to the astronauts for missions like Mars transit, and longer duration Martian surface missions. Although plant chambers for supplemental food production would be relatively small, they could provide the bioregenerative research community with platforms for testing different crops in a space environment and serve as a stepping stone to build larger bioregenerative systems for future missions. Here we review some of NASA’s research and development (ground and spaceflight) targeting fresh food production systems for space. We encourage readers to also look into the extensive work by other space agencies and universities around the world on this same topic.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7421
Author(s):  
Abhilash Vakkada Ramachandran ◽  
María-Paz Zorzano ◽  
Javier Martín-Torres

The water content of the upper layers of the surface of Mars is not yet quantified. Laboratory simulations are the only feasible way to investigate this in a controlled way on Earth, and then compare it with remote and in situ observations of spacecrafts on Mars. Describing the processes that may induce changes in the water content of the surface is critical to determine the present-day habitability of the Martian surface, to understand the atmospheric water cycle, and to estimate the efficiency of future water extraction procedures from the regolith for In Situ Resource Utilization (ISRU). This paper illustrates the application of the SpaceQ facility to simulate the near-surface water cycle under Martian conditions. Rover Environmental Monitoring Station (REMS) observations at Gale crater show a non-equilibrium situation in the atmospheric H2O volume mixing ratio (VMR) at night-time, and there is a decrease in the atmospheric water content by up to 15 g/m2 within a few hours. This reduction suggests that the ground may act at night as a cold sink scavenging atmospheric water. Here, we use an experimental approach to investigate the thermodynamic and kinetics of water exchange between the atmosphere, a non-porous surface (LN2-chilled metal), various salts, Martian regolith simulant, and mixtures of salts and simulant within an environment which is close to saturation. We have conducted three experiments: the stability of pure liquid water around the vicinity of the triple point is studied in experiment 1, as well as observing the interchange of water between the atmosphere and the salts when the surface is saturated; in experiment 2, the salts were mixed with Mojave Martian Simulant (MMS) to observe changes in the texture of the regolith caused by the interaction with hydrates and liquid brines, and to quantify the potential of the Martian regolith to absorb and retain water; and experiment 3 investigates the evaporation of pure liquid water away from the triple point temperature when both the air and ground are at the same temperature and the relative humidity is near saturation. We show experimentally that frost can form spontaneously on a surface when saturation is reached and that, when the temperature is above 273.15 K (0 °C), this frost can transform into liquid water, which can persist for up to 3.5 to 4.5 h at Martian surface conditions. For comparison, we study the behavior of certain deliquescent salts that exist on the Martian surface, which can increase their mass between 32% and 85% by absorption of atmospheric water within a few hours. A mixture of these salts in a 10% concentration with simulant produces an aggregated granular structure with a water gain of approximately 18- to 50-wt%. Up to 53% of the atmospheric water was captured by the simulated ground, as pure liquid water, hydrate, or brine.


2021 ◽  
Vol 13 (21) ◽  
pp. 4471
Author(s):  
Lu Chen ◽  
Yi Xu ◽  
Bo Li

The complex valley networks that cross the Martian surface offer geomorphologic evidence of the presence of liquid water at some point in its history. However, the derivation of both temporal and hydrological dimensions of this climate phase is far from settled. Studies comparing terrestrial fluvial networks of known formation environments with those on Mars can be used as a key to unlock the past. This work represents an analogy study and comparison between the river networks in the Qaidam Basin and those on Mars. As the Martian valley networks formed in different geologic periods with characteristic and unique features, three cases from the Noachian to the Amazonian were selected to be compared with streams in the Mangya area, where the climate is extremely arid. In terms of the maturity of the dendritic river system, shape, concave index, and branching angle (BA), the valley network in the Mangya area is comparable to Naktong Vallis, dated to the Hesperian. We also calculated throughout the valley networks on Mars the parameters of the BA and the concave index, both of which are important climatic indicators. The results show that the climate on Mars became progressively more arid, starting from the Noachian up to the Amazonian.


2021 ◽  
pp. 105377
Author(s):  
Nathalie Turenne ◽  
Alexis Parkinson ◽  
Daniel M. Applin ◽  
Paul Mann ◽  
Edward A. Cloutis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document