water steam
Recently Published Documents


TOTAL DOCUMENTS

517
(FIVE YEARS 132)

H-INDEX

23
(FIVE YEARS 4)

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 217
Author(s):  
Ladislav Dzurenda ◽  
Michal Dudiak ◽  
Eva Výbohová

The wood of maple (Acer Pseudopatanus L.) was steamed with a saturated steam-air mixture at a temperature of t = 95 °C or saturated steam at t = 115 °C and t = 135 °C, in order to give a pale pink-brown, pale brown, and brown-red color. Subsequently, samples of unsteamed and steamed maple wood were irradiated with a UV lamp in a Xenotest Q-SUN Xe-3-H after drying, in order to test the color stability of steamed maple wood. The color change of the wood surface was evaluated by means of measured values on the coordinates of the color space CIE L* a* b*. The results show that the surface of unsteamed maple wood changes color markedly under the influence of UV radiation than the surface of steamed maple wood. The greater the darkening and browning color of the maple wood by steaming, the smaller the changes in the values at the coordinates L*, a*, b* of the steamed maple wood caused by UV radiation. The positive effect of steaming on UV resistance is evidenced by the decrease in the overall color difference ∆E*. While the value of the total color diffusion of unsteamed maple wood induced by UV radiation is ∆E* = 18.5, for maple wood steamed with a saturated steam-air mixture at temperature t = 95 °C the ∆E* decreases to 12.6, for steamed maple wood with saturated water steam with temperature t = 115 °C the ∆E* decreases to 10.4, and for saturated water steam with temperature t = 135 °C the ∆E* decreases to 7.2. Differential ATR-FTIR spectra declare the effect of UV radiation on unsteamed and steamed maple wood and confirm the higher color stability of steamed maple wood.


2022 ◽  
Vol 12 (1) ◽  
pp. 452
Author(s):  
Filipe Arruda ◽  
José S. Rosa ◽  
Ana Rodrigues ◽  
Luísa Oliveira ◽  
Ana Lima ◽  
...  

This study mainly deals with the effect of hydrodistillation (HD) and water-steam distillation (WSD) methods on the color, yield, and chemical profile of the essential oil (EO) from Cryptomeria japonica fresh leaves from São Miguel Island (Azores Archipelago, Portugal). The yields of EO–HD (pale-yellowish) and EO–WSD (colorless) samples were 1.21% and 0.45% (v/w), respectively. The GC–FID, GC–MS, and 13C-NMR analyses of EO–HD vs. EO–WSD revealed (i) a high-content of monoterpenes (72.8% vs. 86.7%), mainly α-pinene (34.5% vs. 46.4%) and sabinene (20.2% vs. 11.6%), and oxygenated mono- and sesquiterpenes (20.2% vs. 9.6%); (ii) similar sesquiterpene (1.6% vs. 1.6%), β-myrcene (5.9% vs. 5.8%), and camphene (3.5% vs. 3.8%) contents; and (iii) significant differences in other classes/components: EO–HD is richer in oxygenated sesquiterpenes (17.1%, mainly elemol (10.4%) and α-eudesmol (3.4%)) and diterpenes (3%; mostly phyllocladene), while EO–WSD is richer in oxygenated monoterpenes (7.2%, mainly terpinen-4-ol (5.4%)), p-cymene (4.4%), and limonene (3.2%). Overall, the color, yield, and quantitative composition of the EO samples studied are strongly influenced by the distillation method. Nonetheless, this C. japonica leaf EO displayed a consistent α-pinene- and sabinene-rich composition. The same chemotype was found in a commercial Azorean C. japonica leaf EO sample, obtained by industrial steam distillation (SD), as well as in Corsica C. japonica leaf EO–HD. Furthermore, the bioactive composition of our EO samples revealed the potential to be used in green plant protection and in the medical, food, cosmetic, and household industries.


Author(s):  
Jing Wu ◽  
Xiaofeng Li ◽  
Tingting Zhang ◽  
Xiao-Peng Li ◽  
Wei Li ◽  
...  

Solar steam generation devices cannot work properly under weak solar light irradiation and even no solar light. Herein, an all-weather-available electrothermal and solarthermal wood-derived porous carbon-based water steam generation device...


2021 ◽  
Vol 12 (1) ◽  
pp. 261
Author(s):  
Jacek Kucharski ◽  
Andrzej Fraczyk ◽  
Piotr Urbanek

Drying various materials constitutes an essential component of several industrial processes, e.g., paper production. Typically, rotating cylinders heated internally by water steam are used for drying tape-shaped material in paper-making machines. Such an approach remains very energy-consuming, while the whole process is expensive and in conflict with the global policy of reducing energy consumption in heavy industry. One promising alternative method of drying fibrous tapes is the induction heating of drying cylinders. In this paper, we propose a drying system based on a set of inductors (electromagnetic field sources) that generate energy in the mantle of the cylinder and dry the running tape. By enabling the movement of the inductors, the system provides a high level of flexibility in terms of reacting to the varying humidity of the tape. Additionally, imaging the temperature field on the cylinder surface provides a supplementary source of information, enabling the temperature profile to be controlled. Two types of humidity control systems, a one-loop feedback control and a cascade control, were designed and analyzed. Simulation analysis and experimental verification performed using a semi-industrial setup proves that using the proposed cascade control ensures more than 30% faster response of the whole dryness control system.


Geophysics ◽  
2021 ◽  
pp. 1-48
Author(s):  
Gurban Orujov ◽  
Andrei Swidinsky ◽  
Rita Streich

Controlled-source electromagnetic (CSEM) methods have the potential to be used in reservoir monitoring problems, due to their sensitivity to subsurface resistivity distribution. For example, time-lapse electromagnetic (EM) measurements can help to determine reservoir changes during enhanced oil recovery (EOR) processes such as water/steam injection or CO2 sequestration. Although metal infrastructure such as pipelines and casings can strongly influence EM data and mask the underlying geological response, one may presume that these effects cancel out during time-lapse surveys. In this paper, we analyze the effects of well casings on time-lapse surface-to-surface EM measurements. First, using a synthetic example of an onshore 1D hydrocarbon reservoir we quantify the effect of single and multiple casings at several source and receiver locations. We show that time-lapse responses are distorted significantly when a source or receiver is located near a casing. Next, we study a more realistic scenario where we approximate the hydrocarbon reservoir as a thin bounded resistive sheet. We present a Method of Moments (MoM) algorithm to calculate the secondary currents and charges on a well casing and resistive sheet combination and validate the electric fields these secondary sources generate against finite element modeling. Finally, we calculate and explicitly demonstrate time-lapse amplitude changes in the well casing-thin sheet interaction matrix, secondary currents, charges, and surface electric fields. Our 3D modeling results show that the conductive casing reduces the ability of the resistive sheet to impede the current flow and distorts time-lapse responses. Therefore, one cannot fully eliminate casing effects by subtraction of time-lapse data and must fully incorporate such infrastructure into forward models for time-lapse EM inversion.


2021 ◽  
Vol 3 (3) ◽  
pp. 75-81
Author(s):  
A. V. Vakhin ◽  
S. A. Sitnov ◽  
I. I. Mukhamatdinov

Nowadays, it is especially important and relevant to improve the efficiency of existing methods of enhanced oil recovery, in particular, thermal methods using water steam. The use of catalysis at the stage of development of unconventional hydrocarbon fields, namely super-viscous and bituminous oils, will allow solving this problem. This work is devoted to the study of the transformation of heavy oil from the Ashalchinskoye field in the process of catalytic aquathermolysis. The oil samples were extracts from sandstone, which was subjected to thermal steam treatment in a high-pressure reactor at temperatures of 200 and 250C for 24 h. Nanosized iron (II, III) oxide in complex with a hydrogen donor was used as a catalytic composition. According to the results of SARA-analysis, it was found that at a temperature of 200C, iron oxide does not show its catalytic properties, and there is no noticeable improvement in the composition of heavy oil. The destruction of resins and asphaltenes is observed after thermocatalytic treatment at 250C. This leads to the enrichment of oil with lighter hydrocarbons, which is confirmed by GC-MS data of the saturated fraction of oil. All this provides a significant decrease in the viscosity of heavy oil compared to the non-catalytic process from 1140 cP to 37 cP The formation of coke-like substances adsorbed on sandstone as a result of thermocatalytic action at 250C was revealed by the results of TG-DSC.


2021 ◽  
Vol 7 ◽  
pp. 5100-5118
Author(s):  
Zhijun Wu ◽  
Jingtao Wu ◽  
Zhe Kang ◽  
Jun Deng ◽  
Zongjie Hu ◽  
...  

2021 ◽  
Vol 2088 (1) ◽  
pp. 012029
Author(s):  
V I Melikhov ◽  
O I Melikhov ◽  
D V Finoshkina

Abstract A linear analysis of the stability of the three-layer stratified hydrodynamic system “water (top) – steam – melt (bottom)” has been performed. Kinematic and dynamic conditions on the “water – steam” and “steam – melt” interfaces are formulated, and on their basis a dispersion equation is obtained that relates the circular frequency of perturbations to the wavenumber. Analysis of this equation made it possible to determine the region of instability of this system and to find the wavenumber of the most fastly growing harmonics. The results obtained were used to estimate the size of bubbles formed at the interface between steam and water due to the development of the Rayleigh-Taylor instability. The obtained theoretical results are consistent with experimental observations in such systems. The heights of the melt splashes into water due to the collapse of the formed steam bubble were estimated. The obtained estimations demonstrate possibilities of the formation of melt-water mixture region during the spreading of the melt under a water layer, in which a strong steam explosion can occur.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6530
Author(s):  
Bartosz Ciupek ◽  
Karol Gołoś ◽  
Radosław Jankowski ◽  
Zbigniew Nadolny

This academic paper revolves around the results of research on the change in emission parameters of the used heating boiler following the introduction of the overheated water stream, which had an impact on different emission parameters. The research results provide an insight into the hard coal combustion process, which had a significant impact on the change in the chemical composition of exhaust gases: it contributed to the lower mass concentration of the emitted dust and black carbon (PM) as well as nitric oxides (NOx) while, at the same time, playing a significant role in increasing the mass concentration of the emitted carbon oxide (CO). Two types of devices were used for the purposes of conducting the research at hand: a boiler with an automatic fuel feeding system with one combustion chamber and a boiler with a combustion chamber and an afterburning chamber fitted over it. Apart from the measurements of mass concentration of the emitted harmful substances, the research also focused on measurements of temperature inside the combustion and afterburning chambers, as well as the temperature of exhaust gases and their oxygen content. As part of the research, water steam was introduced to the combustion and afterburning chambers at the flow rate of 0.71 kg/h and 3.60 kg/h for boilers operating at a minimum power of 30% and a nominal power of 100%. An original steam generator with an overheated water steam production range from 0.71 kg/h to 3.60 kg/h was used to create and feed the water steam. The efficiency of the combustion process was calculated using the obtained results for each operating configuration of a given boiler.


Sign in / Sign up

Export Citation Format

Share Document