interscapular brown adipose tissue
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 38)

H-INDEX

36
(FIVE YEARS 4)

2022 ◽  
pp. 1-7
Author(s):  
Yuni Susanti Pratiwi ◽  
Melisa Siannoto ◽  
Hanna Goenawan ◽  
Nova Sylviana ◽  
Vita Murniati Tarawan ◽  
...  

The white adipose tissue (WAT) browning process has become one of the promising methods for managing obesity. During this process, WAT is transformed into brown-like adipose tissue, which is also known as beige adipose tissue. The browning process can be activated by several inducers. One of the best candidates is peroxisome proliferator-activated receptor γ (PPARγ) agonist. Nutmeg (Myristica fragrans Houtt) is a natural PPARα/γ partial agonist that is known to contribute to the browning effect. This study aimed to explore the potential effect of nutmeg seed extract (NuSE) on body weight reduction and uncoupling protein (UCP)1, UCP2, UCP3, and peroxisome proliferator-activated receptor gamma coactivator-1 PGC-1α levels in aging rats. Eight male Wistar rats (80 weeks old) were divided into control and treatment groups. Both groups were fed a standard diet, and the treatment group was given 8.1 mg/kg body weight/day of NuSE via oral gavage for 12 weeks. After 12 weeks, the levels of UCP1, UCP2, UCP3, and PGC-1α from both inguinal WAT (iWAT) and interscapular brown adipose tissue (BAT) were examined. We observed that the administration of NuSE has no significant effect to the decreasement of rats body weights (p = 0.464), levels of UCP1 (p = 0.686), UCP2 (p = 0.360), UCP3 (p = 0.076), and PGC-1α (p = 0.200).


2022 ◽  
Vol 12 ◽  
Author(s):  
Fernanda C. B. Oliveira ◽  
Eduarda J. Bauer ◽  
Carolina M. Ribeiro ◽  
Sidney A. Pereira ◽  
Bruna T. S. Beserra ◽  
...  

AimsLiraglutide is a long-acting glucagon-like peptide 1 (GLP-1) receptor agonist used as an anti-hyperglycemic agent in type 2 diabetes treatment and recently approved for obesity management. Weight loss is attributed to appetite suppression, but therapy may also increase energy expenditure. To further investigate the effect of GLP-1 signaling in thermogenic fat, we assessed adipose tissue oxygen consumption and type 2 deiodinase (D2) activity in mice treated with liraglutide, both basally and after β3-adrenergic treatment.MethodsMale C57BL/6J mice were randomly assigned to receive liraglutide (400 μg/kg, n=12) or vehicle (n=12). After 16 days, mice in each group were co-treated with the selective β3-adrenergic agonist CL316,243 (1 mg/kg, n=6) or vehicle (n=6) for 5 days. Adipose tissue depots were assessed for gene and protein expression, oxygen consumption, and D2 activity.ResultsLiraglutide increased interscapular brown adipose tissue (iBAT) oxygen consumption and enhanced β3-adrenergic-induced oxygen consumption in iBAT and inguinal white adipose tissue (ingWAT). These effects were accompanied by upregulation of UCP-1 protein levels in iBAT and ingWAT. Notably, liraglutide increased D2 activity without significantly upregulating its mRNA levels in iBAT and exhibited additive effects to β3-adrenergic stimulation in inducing D2 activity in ingWAT.ConclusionsLiraglutide exhibits additive effects to those of β3-adrenergic stimulation in thermogenic fat and increases D2 activity in BAT, implying that it may activate this adipose tissue depot by increasing intracellular thyroid activation, adding to the currently known mechanisms of GLP-1A-induced weight loss.


2021 ◽  
Author(s):  
Christoph Andreas Engelhard ◽  
Chien Huang ◽  
Sajjad Khani ◽  
Petr Kasparek ◽  
Jan Prochazka ◽  
...  

Cold and nutrient activated brown adipose tissue (BAT) is capable of increasing systemic energy expenditure via uncoupled respiration and secretion of endocrine factors thereby protecting mice against diet-induced obesity and improving insulin response and glucose tolerance in men. Long non-coding RNAs (lncRNAs) have recently been identified as fine tuning regulators of cellular function. While certain lncRNAs have been functionally characterised in adipose tissue, their overall contribution in the activation of BAT remains elusive. We identified lncRNAs correlating to interscapular brown adipose tissue (iBAT) function in high fat diet (HFD) and cold stressed mice. We focused on Gm15551 which has an adipose tissue specific expression profile, is highly upregulated during adipogenesis and downregulated by β-adrenergic activation in mature adipocytes. Albeit we performed comprehensive transcriptional and adipocyte physiology profiling in vitro and in vivo, we could not detect an effect of gain or loss of function of Gm15551.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniela Boschetti ◽  
Cynthia R. Muller ◽  
Anna Laura V. Américo ◽  
Bruno Vecchiatto ◽  
Luiz Felipe Martucci ◽  
...  

Obesity is associated with increased risk of several chronic diseases and the loss of disease-free years, which has increased the focus of much research for the discovery of therapy to combat it. Under healthy conditions, women tend to store more fat in subcutaneous deposits. However, this sexual dimorphism tends to be lost in the presence of comorbidities, such as type 2 diabetes mellitus (T2DM). Aerobic physical exercise (APE) has been applied in the management of obesity, however, is still necessary to better understand the effects of APE in obese female. Thus, we investigated the effect of APE on body weight, adiposity, exercise tolerance and glucose metabolism in female ob/ob mice. Eight-weeks-old female wild-type C57BL/6J and leptin-deficient ob/ob mice (Lepob) were distributed into three groups: wild-type sedentary group (Wt; n = 6), leptin-deficient sedentary group (LepobS; n = 5) and leptin-deficient trained group (LepobT; n = 8). The LepobT mice were subjected to 8 weeks of aerobic physical exercise (APE) at 60% of the maximum velocity achieved in the running capacity test. The APE had no effect in attenuating body weight gain, and did not reduce subcutaneous and retroperitoneal white adipose tissue (SC-WAT and RP-WAT, respectively) and interscapular brown adipose tissue (iBAT) weights. The APE neither improved glucose intolerance nor insulin resistance in the LepobT group. Also, the APE did not reduce the diameter or the area of RP-WAT adipocytes, but the APE reduced the diameter and the area of SC-WAT adipocytes, which was associated with lower fasting glycemia and islet/pancreas area ratio in the LepobT group. In addition, the APE increased exercise tolerance and this response was also associated with lower fasting glycemia in the LepobT group. In conclusion, starting APE at a later age with a more severe degree of obesity did not attenuate the excessive body weight gain, however the APE promoted benefits that can improve the female health, and for this reason it should be recommended as a non-pharmacological therapy for obesity.


Author(s):  
Clara Huesing ◽  
Rui Zhang ◽  
Sanjeev Gummadi ◽  
Nathan Lee ◽  
Emily Qualls‐Creekmore ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 168-176
Author(s):  
Orien L Tulp ◽  
Aftab R Awan ◽  
George P Einstein

Obesity develops in the obese phenotype of the congenic LA/Ntul//-cp (corpulent) rat strain by 6 weeks of age.1 To gain insight into the contributors to the expression of obesity in the obese phenotype of this strain, groups [n=12-20 rats/phenotype] of congenic male lean and obese LA/Ntul//-cp (corpulent) rats were fed an ad libitum standardized Purina chow diet (CHOW) from 6 to 12 weeks or age, and subgroups (n=6 rats / subgroup) were overfed with a highly palatable cafeteria diet (CAFÉ) from 9 to 12 weeks of age (WOA). A subgroup of obese rats (n=6) were subjected to bilateral adrenalectomy (ADX) at 6 WOA and followed the same dietary regimen and treatment schedule. BW of lean and obese animals were similar at 6 WOA and increased by 88% in lean phenotype and 281% in obese phenotype during the 6 weeks study, while in ADX obese rats, BW were similar at 6 and 9 WOA but BW increased to 2.5-fold above starting weights and 1.8-fold above 9-week weights between 9 and 12 WOA. The CAFE supplement was without significant effect on final body weights in the lean phenotypes, but was associated with significantly greater body weights at ages 9 and 12 WOA in the obese phenotype (p=<0.05) and in the obese-ADX at 12 WOA. CE (kcal/gram gain of BW per day) remained relatively constant in lean and obese-ADX rats throughout the study, but CE was more efficient in the obese phenotype at all ages studied and was more efficient with the CAFE supplement feeding regimen. Fasting I:G ratios at 12 weeks of age were 4.2-fold greater in obese than lean and were partially normalized in obese-ADX to 1.7-fold increase at 12 WOA. Relative adiposity of obese rats was 3.8-fold greater in obese than lean phenotype, with the greatest increase in the SQ depot. Resting VO2 (RMR) was lower in obese than lean rats at each age studied and was increased by ADX. Thermogenic interscapular brown adipose tissue (IBAT) mass was greater in obese and obese-ADX than lean rats. The results of this study indicate that CE is associated with the predisposition for the expression and development of adiposity in the obese phenotype of this strain and is associated with an increased I:G ratio and IBAT mass that is consistent with insulin resistance and an impaired capacity for energy expenditure and became normalized on the Chow but not the CAFE diet following ADX. These observations implicate likely multiple metabolic factors that contribute to a greater efficiency of energy storage, utilization and or energy conservation in the obese than in the lean phenotype of this strain and which is partially corrected in the obese phenotype by ADX. The metabolic impact of added caloric intake was associated with an additive impact on the CE of weight gain and adiposity in the obese phenotype of this congenic rodent strain and was partially corrected via ADX


2021 ◽  
pp. 101402
Author(s):  
Steven M. Romanelli ◽  
Kenneth T. Lewis ◽  
Akira Nishii ◽  
Alan C. Rupp ◽  
Ziru Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carola Mancini ◽  
Sabrina Gohlke ◽  
Francisco Garcia-Carrizo ◽  
Vyacheslav Zagoriy ◽  
Heike Stephanowitz ◽  
...  

AbstractBrown adipose tissue function declines during aging and may contribute to the onset of metabolic disorders such as diabetes and obesity. Only limited understanding of the mechanisms leading to the metabolic impairment of brown adipocytes during aging exists. To this end, interscapular brown adipose tissue samples were collected from young and aged mice for quantification of differential gene expression and metabolite levels. To identify potential processes involved in brown adipocyte dysfunction, metabolite concentrations were correlated to aging and significantly changed candidates were subsequently integrated with a non-targeted proteomic dataset and gene expression analyses. Our results include novel age-dependent correlations of polar intermediates in brown adipose tissue. Identified metabolites clustered around three biochemical processes, specifically energy metabolism, nucleotide metabolism and vitamin metabolism. One mechanism of brown adipose tissue dysfunction may be linked to mast cell activity, and we identify increased histamine levels in aged brown fat as a potential biomarker. In addition, alterations of genes involved in synthesis and degradation of many metabolites were mainly observed in the mature brown adipocyte fraction as opposed to the stromal vascular fraction. These findings may provide novel insights on the molecular mechanisms contributing to the impaired thermogenesis of brown adipocytes during aging.


2021 ◽  
Vol 22 (19) ◽  
pp. 10391
Author(s):  
Takuya Sakurai ◽  
Toshiyuki Fukutomi ◽  
Sachiko Yamamoto ◽  
Eriko Nozaki ◽  
Takako Kizaki

In recent years, brown adipose tissue (BAT), which has a high heat-producing capacity, has been confirmed to exist even in adults, and it has become a focal point for the prevention and the improvement of obesity and lifestyle-related diseases. However, the influences of obesity and physical activity (PA) on the fluid factors secreted from BAT (brown adipokines) are not well understood. In this study, therefore, we focused on brown adipokines and investigated the effects of obesity and PA. The abnormal expressions of gene fluid factors such as galectin-3 (Lgals3) and Lgals3 binding protein (Lgals3bp), whose proteins are secreted from HB2 brown adipocytes, were observed in the interscapular BAT of obese mice fed a high-fat diet for 4 months. PA attenuated the abnormalities in the expressions of these genes. Furthermore, although the gene expressions of factors related to brown adipocyte differentiation such as peroxisome proliferator-activated receptor gamma coactivator 1-α were also down-regulated in the BAT of the obese mice, PA suppressed the down-regulation of these factors. On the other hand, lipogenesis was increased more in HB2 cells overexpressing Lgals3 compared with that in control cells, and the overexpression of Lgals3bp decreased the mitochondrial mass. These results indicate that PA attenuates the obesity-induced dysregulated expression of brown adipokines and suggests that Lgals3 and Lgals3bp are involved in brown adipocyte differentiation.


Sign in / Sign up

Export Citation Format

Share Document