peak displacement
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 76)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Shigeru Fujita ◽  
Takashi Tanaka

Abstract The geomagnetic variations of the preliminary impulse (PI) of the sudden commencement (SC) are known to show a time delay of the peak displacement and longer duration time in the higher latitudes in the pre-noon and post-noon sectors of the polar region. This peculiar behavior of the PI geomagnetic variation is associated with temporal deformation of the ionospheric PI field-aligned current (FAC) distribution into a crescent shape; its lower-latitude edge extends toward the anti-sunward direction, and its higher-latitude edge almost stays on the same longitude near noon. Numerical simulations revealed that the deformation of the FAC distribution is derived from different behaviors of the two PI current systems. The first current system consists of the FAC connected to the PI FAC in the lower latitude side of the ionosphere, the cross-magnetopause current, and the magnetosheath current (type L current system). The cross-magnetopause current is the inertia current generated in the acceleration front of the solar wind due to the sudden compression of the magnetosheath. Thus, the longitudinal speed of the type L current system in the ionosphere is the solar wind speed in the magnetosheath projected into the ionosphere. In contrast, the PI current system connected to the PI FAC at higher latitude (type H current system) consists of the upward/downward FAC in the pre-noon/post-noon sector, respectively, and dawn-to-dusk field-perpendicular current (FPC) along the dayside magnetopause. The dawn-to-dusk FPC moves to the higher latitudes in the outer magnetosphere over time. The FAC of the type H current system is converted from the FPC due to convergence of the return FPC heading toward the sunward direction in the outer magnetosphere; the return FPC is the inertia current driven by the magnetospheric plasma flow associated with compression of the magnetopause behind the front region of the accelerated solar wind. The acceleration front spreads concentrically from the subsolar point. Consequently, as the return FPC is converted to the FAC of the type H current system, it does not move much in the longitudinal direction over time because the dawn-to-dusk FPC of the type H current system moves to the higher latitudes. Therefore, the high-latitude edge of the PI current distribution in the ionosphere moves only slightly. Finally, we clarified that the FPC-FAC conversion of the type L current system mainly occurs in the region where the Alfvén speed starts to increase toward the Earth. A region with a steep gradient of the Alfvén speed like the plasmapause is not always necessary for conversion from the FPC to the FAC. We also suggest the possible field-aligned structure of the standing Alfvén wave that may occur in the PI phase.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Kang Liang ◽  
Kunpeng Gao ◽  
Wenqing Cai

The nanoindentation (NI) experiment is an effective method to evaluate the micromechanical property of materials. The substrate effect is a nonnegligible factor which could influence the accuracy of the NI experiment result. Large numbers of previous studies have focused on the substrate effect based on the coating/substrate model, whereas the substrate effect in the testing of the hybrid material was rarely involved. The real NI experiment and the numerical simulation method were adopted to reveal the characteristics of the substrate effect in the NI experiment of the hybrid material in this paper, such as the rock or cement material. The peak displacement h peak and the residual displacement h residual of the indenter, which could obtain directly from the NI experiment and were usually considered as key basic variables to calculated other parameters, were selected as evaluation indexes of the substrate effect. The results indicated that there was a significant difference of the NI experiment result between the coating/substrate and the hybrid material under the same condition. The lateral boundary stiffness and discontinuous face were considered as main factors that induced this difference, and their effect were analysed, respectively. Young’s modulus E s and Poisson’s ratio μ s of the substrate were selected as the variables in the parametric study, and the relationship between them and the NI experiment result were discussed.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 80
Author(s):  
Dongxu Zhao ◽  
Jie Ru ◽  
Tong Wang ◽  
Yanjie Wang ◽  
Longfei Chang

Current ionic polymer-metal composite (IPMC) always proves inadequate in terms of large attenuation and short working time in air due to water leakage. To address this problem, a feasible and effective solution was proposed in this study to enhance IPMC performance operating in air by doping polyethylene oxide (PEO) with superior water retention capacity into Nafion membrane. The investigation of physical characteristics of membranes blended with varying PEO contents revealed that PEO/Nafion membrane with 20 wt% PEO exhibited a homogeneous internal structure and a high water uptake ratio. At the same time, influences of PEO contents on electromechanical properties of IPMCs were studied, showing that the IPMCs with 20 wt% PEO presented the largest peak-to-peak displacement, the highest volumetric work density, and prolonged stable working time. It was demonstrated that doping PEO reinforced electromechanical performances and restrained displacement attenuation of the resultant IPMC.


2021 ◽  
Author(s):  
Yi Luo ◽  
Chenhao Pei ◽  
Dengxing Qu ◽  
Xinping Li ◽  
Ruiqiu Ma ◽  
...  

Abstract To explore the distribution of cracks in anchored caverns under the blast load, cohesive elements with zero thickness were employed to simulate crack propagation through numerical analysis based on a similar model test. Furthermore, the crack propagation process in anchored caverns under top explosion was analysed and the distribution and mode of propagation of cracks in anchored caverns when a fracture with different dip angles was present in the vault were discussed. With the propagation of the explosive stress waves, cracks successively occur at the boundary of the anchored zone of the vault, arch foot, and floor of the anchored caverns. Tensile cracks are preliminarily found in rocks surrounding the caverns. In the case that a pre-fabricated fracture is present in the upper part of the vault, the number of cracks at the boundary of the anchored zone of the vault decreases, then increases with increasing dip angle of the pre-fabricated fracture. The fewest cracks at the boundary of the anchored zone occur if the dip angle of the pre-fabricated fracture is 45º. The wing cracks deflected to the vault are formed at the tip of the pre-fabricated fracture, around which tensile and shear cracks are synchronously present. Under top explosion, both the peak displacement and peak particle velocity in surrounding rocks of anchored caverns reach their maximum values at the vault, successively followed by the side wall and the floor. In addition, they show asymmetry with the difference of the dip angle of the pre-fabricated fracture; the vault displacement of anchored caverns is mainly attributed to the formation of tensile cracks at the boundary of the anchored zone generated due to tensile waves reflected from the free face of the vault. When a fracture is present in the vault, the peak displacement of the vault decreases while the residual displacement increases.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012009
Author(s):  
I Ho ◽  
N Z Abu Bakar

Abstract The paper presents development of vertical vibration simulation for a seated passenger in a moving vehicle is resulting from the bounce effect of the vehicle under various conditions. Although extensive research has been conducted in this field of study, the existing analysis were conducted on either the suspension of vehicle or the human body and not both. In this paper, the simulation model consists of three sub-systems, namely, vehicle suspension, seat suspension and human body model in which the vertical vibration is transmitted. By incorporating these sub-systems into the simulation, a correlation between mechanical and biological aspects can be formed between the three sub-systems. The transmission of vertical vibration in the validated simulation model provides a more realistic approach which can result to a better comparison to the real-life scenario. Parametric analysis of passive suspension system shows that lower mass ratio, higher stiffness ratio and lower damping coefficient results in better ride comfort. The incorporation of variable damper into the suspension system shows significant improvement in settling time, peak displacement and velocity, lesser discomfort rating and higher safety in passenger body.


Author(s):  
Hossein Soleimankhani ◽  
Greg MacRae ◽  
Tim Sullivan

Single-storey systems with different hysteretic characteristic are subjected to impulse-type short duration and long duration earthquake records to investigate the effects of hysteretic behaviour and ground motion characteristics on the seismic response. EPP, bilinear, Takeda, SINA, and flag-shaped hysteretic models loops are considered and an energy approach is taken to explain the inelastic behaviour. The first part of the work is based on analyses of the single-storey systems without any torsion, however; torsional irregularity is considered in the later analyses. It is shown that structures with the same backbone curve, but different hysteretic characteristics, tend to experience the same maximum response under short duration earthquake records, where there is one major displacement excursion. The likelihood of further displacement in the reverse (i.e. negative) direction is characterized using energy methods and free vibration analyses along with a new proposed “oscillation resistance ratio (ORR)” are employed to improve the understanding of the seismic response. Hysteretic models with low ORR, such as SINA and flag-shaped, are shown to have a greater likelihood of higher absolute displacement response in the negative direction compared with those with fatter hysteretic loops. The understanding of the response in terms of energy reconciles some differences in the ability of initial stiffness versus secant stiffness based methods to predict peak displacement demands with account for different ground motion characteristics. The same peak displacements in the primary direction was also observed for structures with stiffness/strength eccentricities under an impulse-type earthquake record. However, during unloading, the elastic energy stored in the out-of-plane elements is released causing greater displacement on the weak side in the reverse direction.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7118
Author(s):  
Sherlyn Gabriel ◽  
Christopher J. von Klemperer ◽  
Steeve Chung Kim Yuen ◽  
Genevieve S. Langdon

This paper presents insights into the blast response of sandwich panels with lightweight foam cores and asymmetric (different thicknesses) glass fibre epoxy face sheets. Viscously damped elastic vibrations were observed in the laminates (no core), while the transient response of the sandwich panels was more complex, especially after the peak displacement was observed. The post-peak residual oscillations in the sandwich panels were larger and did not decay as significantly with time when compared to the equivalent mass laminate panel test. Delamination was the predominant mode of failure on the thinner facesheet side of the sandwich panel, whereas cracking and matrix failure were more prominent on the thicker side (which was exposed to the blast). The type of constituent materials used and testing conditions, including the clamping method, influenced the resulting failure modes observed. A probable sequence of damage in the sandwich panels was proposed, based on the transient displacement measurements, a post-test failure analysis, and consideration of the stress wave propagation through the multilayered, multimaterial structure. This work demonstrates the need for detailed understanding of the transient behaviour of multilayered structures with significant elastic energy capacity and a wide range of possible damage mechanisms. The work should prove valuable to structural engineers and designers considering the deployment of foam-core sandwich panels or fibre reinforced polymer laminates in applications when air-blast loading may pose a credible threat.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257820
Author(s):  
Kate Horan ◽  
Kieran Kourdache ◽  
James Coburn ◽  
Peter Day ◽  
Henry Carnall ◽  
...  

Horseshoes influence how horses’ hooves interact with different ground surfaces, during the impact, loading and push-off phases of a stride cycle. Consequently, they impact on the biomechanics of horses’ proximal limb segments and upper body. By implication, different shoe and surface combinations could drive changes in the magnitude and stability of movement patterns in horse-jockey dyads. This study aimed to quantify centre of mass (COM) displacements in horse-jockey dyads galloping on turf and artificial tracks in four shoeing conditions: 1) aluminium; 2) barefoot; 3) GluShu; and 4) steel. Thirteen retired racehorses and two jockeys at the British Racing School were recruited for this intervention study. Tri-axial acceleration data were collected close to the COM for the horse (girth) and jockey (kidney-belt), using iPhones (Apple Inc.) equipped with an iOS app (SensorLog, sample rate = 50 Hz). Shoe-surface combinations were tested in a randomized order and horse-jockey pairings remained constant. Tri-axial acceleration data from gallop runs were filtered using bandpass Butterworth filters with cut-off frequencies of 15 Hz and 1 Hz, then integrated for displacement using Matlab. Peak displacement was assessed in both directions (positive ‘maxima’, negative ‘minima’) along the cranio-caudal (CC, positive = forwards), medio-lateral (ML, positive = right) and dorso-ventral (DV, positive = up) axes for all strides with frequency ≥2 Hz (mean = 2.06 Hz). Linear mixed-models determined whether surfaces, shoes or shoe-surface interactions (fixed factors) significantly affected the displacement patterns observed, with day, run and horse-jockey pairs included as random factors; significance was set at p<0.05. Data indicated that surface-type significantly affected peak COM displacements in all directions for the horse (p<0.0005) and for all directions (p≤0.008) but forwards in the jockey. The largest differences were observed in the DV-axis, with an additional 5.7 mm and 2.5 mm of downwards displacement for the horse and jockey, respectively, on the artificial surface. Shoeing condition significantly affected all displacement parameters except ML-axis minima for the horse (p≤0.007), and all displacement parameters for the jockey (p<0.0005). Absolute differences were again largest vertically, with notable similarities amongst displacements from barefoot and aluminium trials compared to GluShu and steel. Shoe-surface interactions affected all but CC-axis minima for the jockey (p≤0.002), but only the ML-axis minima and maxima and DV-axis maxima for the horse (p≤0.008). The results support the idea that hoof-surface interface interventions can significantly affect horse and jockey upper-body displacements. Greater sink of hooves on impact, combined with increased push-off during the propulsive phase, could explain the higher vertical displacements on the artificial track. Variations in distal limb mass associated with shoe-type may drive compensatory COM displacements to minimize the energetic cost of movement. The artificial surface and steel shoes provoked the least CC-axis movement of the jockey, so may promote greatest stability. However, differences between horse and jockey mean displacements indicated DV-axis and CC-axis offsets with compensatory increases and decreases, suggesting the dyad might operate within displacement limits to maintain stability. Further work is needed to relate COM displacements to hoof kinematics and to determine whether there is an optimum configuration of COM displacement to optimise performance and minimise injury.


Author(s):  
Yanwei Wang ◽  
Xiaojun Li ◽  
Li Li ◽  
Zifa Wang ◽  
Jingyan Lan

Abstract A new characteristic parameter Sdτ is proposed to improve the performance of magnitude estimation in earthquake early warning (EEW). Sdτ is the product of summation of absolute displacement multiplied by the maximum predominant period (τmaxP) for the first arriving seconds of a seismic wave. About 30,725 underground records at borehole stations for 3645 earthquakes with magnitude between 4.0 and 9.0 from the Japanese KiK-net were used to compare the magnitude proxy performance based on the proposed Sdτ with that based on either τmaxP or peak displacement Pd. The comparison results show that for a magnitude between 4.0 and 7.3, Sdτ has a better correlation with magnitude and higher estimated accuracy than either τmaxP or Pd. Hypocentral distance is not required when using Sdτ, but it can be used to further improve the accuracy of magnitude estimate. These results confirm that Sdτ can significantly improve the accuracy and timeliness of continuous magnitude estimation in an EEW system.


2021 ◽  
Vol 7 (2) ◽  
pp. 119-130
Author(s):  
M Mirza Abdillah Pratama ◽  
Septiana Dyah Sugmana Putri ◽  
Edi Santoso

Shear walls in high-rise buildings serve to increase the resistance of high-rise buildings to lateral loads. This study aims to compare the structural performance of an existing 8 (eight) storey building designed as a special moment resisting frame structure against a building designed as a dual system, which consists of: structural vibration time, base shear force, displacement, and drift. Three configurations for shear walls are designed, as follows: (1) L-shaped located at the corner of one side of the building, totaling 2 (two) units (SW1); (2) L-shaped located at the four corners of the building totaling 4 (four) units (SW2); and 3) I-shaped located along the side of the building totaling 6 (six) units (SW3). Simulations are run using the Etabs by taking into account dead loads, live loads, and earthquake loads. The results show that the addition of shear walls can: (1) reduce the vibration period of the structure up to 62,55% in SW3, (2) increase the base shear force up to 86,34% in SW3, (3) reduce peak displacement up to 84,86% in SW3, and (4) reduce the drift between floors up to 89,58% in SW3. However, the SW2 is considered to be better applied to the building by taking into account the structural performance, effectiveness and efficiency factors.


Sign in / Sign up

Export Citation Format

Share Document