mining safety
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 56)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liwen He ◽  
Yingcheng Dai ◽  
Sheng Xue ◽  
Chunshan Zheng ◽  
Baiqing Han ◽  
...  

Effective gas control is of significance for safe efficient coal mining in Haizi Coal Mine and other mines with similar geological conditions. This study concentrates on gas control theories and techniques in multiple coal seams of Haizi Coal Mine (No. 7, No. 8, No. 9, and No. 10 coal seam from top to bottom). To minimize risk of high gas emission and outburst hazard, No. 10 seam was mined first as a protective seam prior to the mining of its overlying outburst-prone No. 7, No. 8, and No. 9 seam. Four gas drainage measures were determined for gas control, including cross-measure boreholes into overlying coal seams, surface goaf wells, roof boreholes, and roof gas drainage roadway. These gas control measures, if implemented through entire coal seam extraction, would be possibly uneconomic. An investigation was undertaken to analyze effects of those four measures on gas emission, methane concentration, and gas drainage quantity in No. 2 1024 mining panel of No. 10 seam. Results indicate that the highly expensive gas drainage measure of a roof roadway has poor drainage performance and could be effectively replaced by roof boreholes. When adopting the optimized combination of gas drainage measures, drainage efficiency of No. 7 seam, No. 8 seam, and No. 9 seam could reach 58.64% and decrease gas pressure to be below 0.74 MPa. Outcomes of this study could provide beneficial guidance not only for gas drainage design optimization in Haizi Coal Mine but also for other multiple-seam mines with similar mining and geological conditions, for increasing gas drainage efficiency and guaranteeing mining safety.


2021 ◽  
Author(s):  
P. Manigandan ◽  
C. Balaji ◽  
M. Ramanan ◽  
S. Ragul

The frequent accidents of mining safety caused severe losses and massive cost losses. The global mining sector urgently needs to improve operational efficiency and the overall safety of mines. This article suggests a WUSN based mining safety monitoring. The monitoring system collects temperature, moisture, soil vibration and gas values around the mine, and then transmits the data through wireless underground sensor network. Here Transmission based on magnetic induction (MI) is being suggested, in this approach soil is medium for communication so based on the soil conductivity the measured information are transferred. It is also an early warning system, which will help all miners in the mine to save their lives before a victim happens.


2021 ◽  
Author(s):  
Yildirim İsmail Tosun

The soft rock and wet slopes increase landslides over 50 m long creep slide and risk assessment for long steep slide in Şırnak open-pit coal mining should be searched in asphaltite quarries. The Avgamasya quarries No1 and 2 at critical depths and road bench sites in Şırnak, reaching over 120 m height with 60–65° shale slopes, developing major creep factors and other factors for landslide in the deep quarry locations is resulting debris rock falling or free sliding. The pore pressure measurements by measurements of water levels in four wells and water flow counting as the mining safety in recent years. This research provided rock slope stability patterns and crack propagation control of the hazardous location and formation cracks. The stages of creep experimentation explored the geophysical characteristics and thaw and freeze testing of rock samples. For this aim, two different long sliding areas with similar geoseismical conditions, two main analyzing methods, and patterns of researches were developed. Firstly, data on crack propagation in situ rock shale faces over certain time periods were determined. Displacement measurements over highly saturated shale—limestone contacts over the base of crack counting in a meter scale such as Rock Quality Designation (RQD) scoring of drilling logs. Secondly, hydrological water level logs were taken into consideration. On the other hand, due to that creep effect over freeze crack propagation unseen cause instability over wet sliding surfaces over 50 m, long sliding surface matter over slopes, poly linear or circle type creep sliding or rock tumbling falling failure types, and GEO5 slope stability, slice analysis will be advantageous instead of Finite Element Method (FEM) method.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Bin Zhao ◽  
Le Gao ◽  
Xianghui Tian ◽  
Yingyu Sun

The reasonable layout of the roadway in closely spaced, ultra-thick coal seam mining is of great significance to mining safety. Based on the research background of repeated roof leaks in the process of repairing the return air roadway in working face No. 30503 in the Tashan Coal Mine, theoretical analysis, in situ engineering testing, and numerical simulation were jointly adopted to evaluate the stability of the return air roadway under two schemes of repairing the original return air roadway and excavating a new return air roadway. The results show that the vertical mining-induced fissure above the roadway will cause severe damage to the roadway due to the influence of working-face mining when restoration of the roadway excavation is adopted. When choosing to excavate a new return air roadway, the new return air roadway just staggers the vertical cracks located in the top slab of the original return air roadway, putting the roadway in a state of stress reduction, making the roadway itself more stable and conducive to support. Therefore, the new air return tunnel was selected to establish the working face. To ensure safety of the working face during the mining of the original return air roadway, the original return air roadway was filled with high water content materials. Site investigation data show that this material plays a cushioning role in the filling section of the original return air roadway during the mining of the 30503 working face, and the deformation of the new return air roadway during the filling section crossing the original return roadway is stable and well controlled.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1274
Author(s):  
Haoxuan Yu ◽  
Shuai Li ◽  
Xinmin Wang

The backfill mining method is one of the common methods of mine mining worldwide, due to its capacity to maximize the recovery of mineral resources and protect the underground and the surface environment. Similar to the developing conditions of China’s mining industry, China’s backfill mining technology started late, and the level of its equipment is weak, but its development is particularly rapid. Especially after entering the 21st century, China has paid more attention to mining safety, environmental protection, and the continuous implementation of resources development, China’s backfill mining method has increasingly improved, and the level of filling equipment has gradually reached the most advanced level worldwide, which means China has been making great progress in the equipment of backfill mining method, and in recent years, China has also made great progress in the theory of backfill pipeline transportation. Therefore, Part I mainly focuses on both the theory and equipment of backfill pipeline transportation and the recent progress China has made in is introduced in two sections as follows: (1) the theory of backfill pipeline transportation and (2) the equipment of the backfill mining method. Finally, the authors claim that this paper serves just as a guide, tossing out a brick to get a jade gem, and we hope many more experts and scholars will be interested and engage in the research of this field.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Shuangwen Ma ◽  
Chen Cao ◽  
Qianjia Hui

Rock burst is one major threat to mining safety and economy. Rock burst occurring in the longwall mining roadway accounts for 85% of the total amount of burst events. This paper investigates the causality mechanism of rock burst in longwall roadways by establishing a finite elastic beam model in the working face based on the elastic foundation theory. The breakage process of the main roof and related dynamic effects are analysed. The result shows that the movement of the main roof shows free vibration under certain damping resistance. It is also found that the roof dominant vibration frequency increases with the increase in the thickness and elastic modulus of the roof. During roof vibration, the vertical stress applied on the coal mass is unloaded. The destressing of the roof-coal interface causes the coal mass in the roadway rib to slip into the roadway under the horizontal ground stress, resulting in rock burst. The possibility of rock burst increases with increase in the strength and thickness of the roof and horizontal ground stress within the coal mass. This mechanism explains the occurrence of rock burst in the mining roadway; it provides the fundamental theory for the prevention and controlling technologies of longwall roadway rock burst.


2021 ◽  
Author(s):  
Menglong WU ◽  
Yicheng YE ◽  
Nanyan HU ◽  
Qihu WANG ◽  
Wenkan TAN

Abstract In order to explore the occurrence and development law of mining safety production accidents, analyze its future change trends, and aim at the ambiguity, non-stationarity, and randomness of mining safety production accidents, an uncertainty prediction model for mining safety production situation is proposed. Firstly, the time series effect evaluation function is introduced to determine the optimal time granularity, which is used as the window width of fuzzy information granulation (FIG), and the time series of mining safety production situation is mapped to Low, R and Up three granular parameter sequences, according to the triangular fuzzy number; Then, the mean value of the intrinsic mode function (IMF) is maintained in the normal dynamic filtering range. After the ensemble empirical mode decomposition (EEMD), the three non-stationary granulation parameter sequences of Low, R and Up are decomposed into the intrinsic mode function components representing the detail information and the trend components representing the overall change, and then the sub-sequences are reconstructed according to the sample entropy to highlight the correlation among the sub-sequences; Finally, the cloud model language rules of mining safety production situation prediction are created. Through time series discretization, cloud transformation, concept jump, time series set division, association rule mining and uncertain reasoning, the reconstructed component sequence is modeled and predicted by uncertainty information extraction. The accuracy of the uncertainty prediction model was verified by 21 sets of test samples. The average relative errors of Low, R and Up sequences were 9.472 %, 16.671 % and 3.625 %, respectively. The research shows that the uncertainty prediction model of mining safety production situation overcomes the fuzziness, non-stationarity and uncertainty of safety production accidents, and provides theoretical reference and practical guidance for mining safety management and decision-making.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Feng Wang ◽  
Zeqi Jie ◽  
Bo Ma ◽  
Weihao Zhu ◽  
Tong Chen

Pressure-relief coal mining provides an effective way to decrease stress concentration in deep mining and ensures mining safety. However, there is currently a lack of research and field verification on the pressure-relief efficiency and influencing factors during upper seam extraction on the lower seam. In order to make up for this deficiency, in this study, field measurements were conducted in panel Y485, which has a maximum depth of 1030 m and is partially under the goaf of the upper 5# seam in the Tangshan coal mine, China, and evolution of advanced abutment pressure was analyzed. Numerical simulations were conducted to study of influence of key strata on advanced abutment pressure. Influence mechanisms of the upper seam extraction on the advanced abutment pressure distribution during lower seam extraction were revealed. The results indicate that the distribution of advanced abutment stress is influenced by the key strata in the overlying strata. The key strata above the upper coal seam were fractured due to the upper coal seam mining, and the advanced abutment stress was only influenced by the key strata between the two seams during lower coal seam mining. When key strata were present between two seams, the extraction of the lower seam still faces potential dynamic disasters after the extraction of the upper seam. In this case, it would be necessary to fracture the key strata between the two seams in advance for the purpose of mining safety. Key strata in the overlying strata of the 5# seam were fractured during extraction, and advanced abutment pressure was only influenced by the key strata located between the two mined seams. The influence distance of advanced abutment pressure in panel Y485 decreased from 73 m to 38 m, and the distance between the peak advanced abutment pressure and the panel decreased from 29 m to 20.5 m, achieving a pronounced pressure-relief effect.


Sign in / Sign up

Export Citation Format

Share Document